• J Pain · Jul 2023

    Review

    PD-1: A new candidate target for analgesic peptide design.

    • Long Zhao, Yu Ma, Xiaofei Song, Yongjiang Wu, Pengjie Jin, and Gang Chen.
    • Center for Basic Medical Research, Co-innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, Jiangsu Province, China.
    • J Pain. 2023 Jul 1; 24 (7): 114211501142-1150.

    AbstractChronic pain is a common health problem in humans. The unique properties and valuable clinical applications of analgesic peptides make them attractive pharmacotherapy options for pain control. Numerous targets for pain modulation processes are currently known, including opioid receptors, transient receptor potential (TRP) channels, voltage-gated ion channels, neuronal nicotinic receptors, and neurotensin receptors. However, these targets are not able to address the development needs of peptide-based drugs. Recent studies revealed that programmed cell death 1 (PD-1) is widely expressed in the dorsal root ganglia (DRG), spinal cord, and cerebral cortex. PD-1 signaling in neurons is involved in the regulation of neuronal excitability, synaptic transmission, and synaptic plasticity. PD-1 is able to silence nociceptive neurons upon activation. Consistently, Pd1 deficiency or blockade increases the pain sensitivity in naïve mice. PD-1 agonists, including PD-L1 and H-20, evoke Src homology 2 domain-containing tyrosine phosphatase-1 (SHP-1) phosphorylation, modulate neuronal excitability, and attenuate acute and chronic pain with minimal opioid-related adverse effects, suggesting a superior therapeutic index and a sound strategy for the development novel nonopioid analgesics. In addition, PD-1 signaling in non-neuronal cells could alleviate chronic pain by regulating neuroinflammation. Here, we review the potential and challenges of PD-1 as a candidate target for the development of analgesic peptides. PERSPECTIVE: This review paper aims to review recent advances in research on PD-1 in the domain of pain interference, explore how to obtain more promising PD-1 receptor-targeting analgesic peptides based on PD-L1 and analgesic peptide H-20 for relieving pathological pain, and offer potential optimization strategies for follow-up work of H-20.Copyright © 2023 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.