-
- Trisha L Marshall, Lindsay C Nickels, Patrick W Brady, Ezra J Edgerton, James J Lee, and Philip A Hagedorn.
- Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
- J Hosp Med. 2023 May 1; 18 (5): 405412405-412.
Background And ObjectiveDiagnostic uncertainty, when unrecognized or poorly communicated, can result in diagnostic error. However, diagnostic uncertainty is challenging to study due to a lack of validated identification methods. This study aims to identify distinct linguistic patterns associated with diagnostic uncertainty in clinical documentation.Design, Setting And ParticipantsThis case-control study compares the clinical documentation of hospitalized children who received a novel uncertain diagnosis (UD) diagnosis label during their admission to a set of matched controls. Linguistic analyses identified potential linguistic indicators (i.e., words or phrases) of diagnostic uncertainty that were then manually reviewed by a linguist and clinical experts to identify those most relevant to diagnostic uncertainty. A natural language processing program categorized medical terminology into semantic types (i.e., sign or symptom), from which we identified a subset of these semantic types that both categorized reliably and were relevant to diagnostic uncertainty. Finally, a competitive machine learning modeling strategy utilizing the linguistic indicators and semantic types compared different predictive models for identifying diagnostic uncertainty.ResultsOur cohort included 242 UD-labeled patients and 932 matched controls with a combination of 3070 clinical notes. The best-performing model was a random forest, utilizing a combination of linguistic indicators and semantic types, yielding a sensitivity of 89.4% and a positive predictive value of 96.7%.ConclusionExpert labeling, natural language processing, and machine learning methods combined with human validation resulted in highly predictive models to detect diagnostic uncertainty in clinical documentation and represent a promising approach to detecting, studying, and ultimately mitigating diagnostic uncertainty in clinical practice.© 2023 Society of Hospital Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.