• J Hosp Med · May 2023

    Developing a machine learning model to detect diagnostic uncertainty in clinical documentation.

    • Trisha L Marshall, Lindsay C Nickels, Patrick W Brady, Ezra J Edgerton, James J Lee, and Philip A Hagedorn.
    • Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
    • J Hosp Med. 2023 May 1; 18 (5): 405412405-412.

    Background And ObjectiveDiagnostic uncertainty, when unrecognized or poorly communicated, can result in diagnostic error. However, diagnostic uncertainty is challenging to study due to a lack of validated identification methods. This study aims to identify distinct linguistic patterns associated with diagnostic uncertainty in clinical documentation.Design, Setting And ParticipantsThis case-control study compares the clinical documentation of hospitalized children who received a novel uncertain diagnosis (UD) diagnosis label during their admission to a set of matched controls. Linguistic analyses identified potential linguistic indicators (i.e., words or phrases) of diagnostic uncertainty that were then manually reviewed by a linguist and clinical experts to identify those most relevant to diagnostic uncertainty. A natural language processing program categorized medical terminology into semantic types (i.e., sign or symptom), from which we identified a subset of these semantic types that both categorized reliably and were relevant to diagnostic uncertainty. Finally, a competitive machine learning modeling strategy utilizing the linguistic indicators and semantic types compared different predictive models for identifying diagnostic uncertainty.ResultsOur cohort included 242 UD-labeled patients and 932 matched controls with a combination of 3070 clinical notes. The best-performing model was a random forest, utilizing a combination of linguistic indicators and semantic types, yielding a sensitivity of 89.4% and a positive predictive value of 96.7%.ConclusionExpert labeling, natural language processing, and machine learning methods combined with human validation resulted in highly predictive models to detect diagnostic uncertainty in clinical documentation and represent a promising approach to detecting, studying, and ultimately mitigating diagnostic uncertainty in clinical practice.© 2023 Society of Hospital Medicine.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.