• J Pain · Jul 2023

    Neurocognitive mechanisms underlying attention bias towards pain: evidence from a drift-diffusion model and event-related potentials.

    • Yinhua Zhang, Qian Ye, Hao He, Richu Jin, and Weiwei Peng.
    • School of Psychology, Shenzhen University, Shenzhen, China.
    • J Pain. 2023 Jul 1; 24 (7): 130713201307-1320.

    AbstractAlthough combining computational modeling with event-related potentials (ERPs) can precisely characterize neurocognitive processes involved in attention bias, it has yet to be applied in the context of pain. Here, a hierarchical drift-diffusion model (DDM) along with ERPs was used to characterize the neurocognitive mechanisms underlying attention bias towards pain. A spatial cueing paradigm was adopted, in which the locations of targets were either validly or invalidly predicted by spatial cues related to pain or nonpain signals. DDM-derived nondecision time was shorter for targets validly cued by pain signals than by nonpain signals, thus indicating speeded attention engagement towards pain; drift rate was slower for targets invalidly cued by pain signals than by nonpain signals, reflecting slower attention disengagement from pain. The facilitated engagement towards pain was partially mediated by the enhanced lateralization of cue-evoked N1 amplitudes, which relate to the bottom-up, stimulus-driven processes of detecting threatening signals. On the other hand, the retarded disengagement from pain was partially mediated by the enhanced target-evoked anterior N2 amplitudes, which relate to the top-down, goal-driven processes of conflict monitoring and behavior regulating. These results demonstrated that engagement and disengagement components of pain-related attention bias are governed by distinct neurocognitive mechanisms. However, it remains possible that the findings are not pain-specific, but rather, are related to threat or aversiveness in general. This deserves to be further examined by adding a control stimulus modality. PERSPECTIVE: This study characterized the neurocognitive processes involved in attention bias towards pain through combining a hierarchical DDM and ERPs. Our results revealed distinctive neurocognitive mechanisms underlying engagement and disengagement components of attention bias. Future studies are warranted to examine whether our findings are pain-specific or not.Copyright © 2023 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.