-
Review
Resident Training in Spine Surgery: A Systematic Review of Simulation-Based Educational Models.
- Ghassan J Farah, James L Rogers, Alexander M Lopez, Nolan J Brown, Zach Pennington, Cathleen Kuo, Justin Gold, Nicholas E Bui, Stefan W Koester, Julian L Gendreau, Luis Daniel Diaz-Aguilar, Michael Y Oh, and Martin H Pham.
- Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California, USA.
- World Neurosurg. 2023 Jun 1; 174: 8111581-115.
ObjectiveWith the increasing prevalence of spine surgery, ensuring effective resident training is becoming of increasing importance. Training safe, competent surgeons relies heavily on effective teaching of surgical indications and adequate practice to achieve a minimum level of technical proficiency before independent practice. American Council of Graduate Medical Education work-hour restrictions have complicated the latter, forcing programs to identify novel methods of surgical resident training. Simulation-based training is one such method that can be used to complement traditional training. The present review aims to evaluate the educational success of simulation-based models in the spine surgical training of residents.MethodsUsing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the PubMed, Web of Science, and Google Scholar databases were systematically screened for English full-text studies examining simulation-based spine training curricula. Studies were categorized based on simulation model class, including animal-cadaveric, human-cadaveric, physical/3-dimensional, and computer-based/virtual reality. Outcomes studied included participant feedback regarding the simulator and competency metrics used to evaluate participant performance.ResultsSeventy-two studies were identified. Simulators displayed high face validity and were useful for spine surgery training. Objective measures used to evaluate procedural performance included implant placement evaluation, procedural time, and technical skill assessment, with numerous simulators demonstrating a learning effect.ConclusionsWhile simulation-based educational models are one potential means of training residents to perform spine surgery, traditional in-person operating room training remains pivotal. To establish the efficacy of simulators, future research should focus on improving study quality by leveraging longitudinal study designs and correlating simulation-based training with clinical outcome measures.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.