-
- L Yang and L S Benardo.
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 29, Brooklyn 11203, USA.
- Neuroscience. 2002 Jan 1;111(2):303-13.
AbstractWe examined the effects of 4-aminopyridine (4-AP) on isolated horizontal (superficial, middle and deep) rat neocortical slices in order to study laminar synchronous network behavior directly. Application of 4-AP induced spontaneous synchronized activity in all of these types of slices. In middle and deep layer slices the activities were similar to those of coronal slices, consisting of periodic short- and long-duration discharges. In superficial slices distinct spontaneous rhythmic multiphasic burst discharges were induced. Ionotropic glutamate receptor antagonists blocked the 4-AP-induced synchronous activities in middle and deep layer slices, but those in superficial slices persisted. The GABA(A) receptor antagonist picrotoxin suppressed this spontaneous synchronous activity resistant to 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (a NMDA receptor antagonist) and 6-cyano-7-nitroquinoxaline-2,3-dione (a non-NMDA receptor antagonist), in superficial slices, leaving small, slow spontaneous events. In superficial slices with intact excitatory amino acid transmission, picrotoxin attenuated the 4-AP-induced spontaneous synchronous discharges, even in this highly convulsant environment. By contrast, conventional coronal slices showed robust spontaneous epileptiform discharges under these circumstances. In intact coronal slices focal 4-AP application in superficial layers induced spontaneous inhibitory GABAergic events, while delivery into deep layers led to epileptiform discharges. From these results we conclude that: (1) 4-AP-induced population discharges are driven by glutamatergic transmission in middle and deep layer horizontal slices, and by GABAergic transmission in superficial layers; (2) only superficial layers are capable of supporting synchronized GABAergic activity independent of excitatory amino acid transmission; (3) superficial layers do not sustain epileptiform activity in the absence of deep layer neurons; and (4) synchronized superficial networks can inhibit deep layer neuronal activity.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.