• Neuroscience · Dec 2011

    Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice.

    • K Sakai.
    • INSERM U1028, CNRS UMR5292, Neuroscience Research Center, University Lyon 1, Integrative Physiology of Brain Arousal System, F-69373, Lyon, France. sakai@univ-lyon1.fr
    • Neuroscience. 2011 Dec 1;197:200-24.

    AbstractWe have recorded, for the first time, in non-anesthetized, head-restrained mice, a total of 407 single units throughout the dorsal raphe nucleus (DR), which contains serotonin (5-hydroxytryptamine, 5-HT) neurons, during the complete wake-sleep cycle. The mouse DR was found to contain a large proportion (52.0%) of waking (W)-active neurons, together with many sleep-active (24.8%) and W/paradoxical sleep (PS)-active (18.4%) neurons and a few state-unrelated neurons (4.7%). The W-active, W/PS-active, and sleep-active neurons displayed a biphasic narrow or triphasic broad action potential. Of the 212 W-active neurons, 194 were judged serotonergic (5-HT W-active neurons) because of their triphasic long-duration action potential and low rate of spontaneous discharge, while the remaining 18 were judged non-serotonergic (non-5-HT W-active neurons) because of their biphasic narrow action potential and higher rate of spontaneous discharge. The 5-HT W-active neurons were subdivided into four groups, types I, II, III, and IV, on the basis of differences in firing pattern during wake-sleep states, their waking selectivity of discharge being in the order type I>type II>type III>type IV. During the transition from sleep to waking, the vast majority of waking-specific or waking-selective type I and II neurons discharged after onset of waking, as seen with non-5-HT W-specific neurons. Triphasic DR W/PS-active neurons were characterized by a low rate of spontaneous discharge and a similar distribution to that of tyrosine hydroxylase-immunoreactive, dopaminergic neurons. Triphasic DR slow-wave sleep (SWS)-active and SWS/PS neurons were also characterized by slow firing. At the transition from sleep to waking, sleep-selective neurons with no discharge activity during waking ceased firing before onset of waking, while, at the transition from waking to sleep, they fired after onset of sleep. The present study shows a marked heterogeneity and functional topographic organization of both serotonergic and non-serotonergic mouse DR neurons and suggests that they play different roles in behavioral state control and the sleep/waking switch.Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.