• Neuroscience · Jun 2023

    Retinoic acid has neuroprotective effects by modulating thioredoxin in ischemic brain damage and glutamate-exposed neurons.

    • Ju-Bin Kang and Phil-Ok Koh.
    • Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea.
    • Neuroscience. 2023 Jun 15; 521: 166181166-181.

    AbstractIschemic stroke is a neurological disorder that causes pathological changes by increasing oxidative stress. Retinoic acid is one of the metabolites of vitamin A. It regulates oxidative stress and exerts neuroprotective effects. Thioredoxin is a small redox protein with antioxidant activity. The aim of this study was to investigate whether retinoic acid modulates the expression of thioredoxin in ischemic brain injury. Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) surgery and retinoic acid (5 mg/kg) or vehicle was administered to adult male rats for four days prior to surgery. MCAO induced neurological deficits and increased oxidative stress and retinoic acid attenuated these changes. Retinoic acid ameliorated the MCAO-induced decrease in thioredoxin expression. MCAO decreases the interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1), and retinoic acid treatment alleviates this decrease. Glutamate (5 mM) exposure induced cell death and decreased thioredoxin expression in cultured neurons. Retinoic acid treatment attenuated these changes in a dose-dependent manner. Retinoic acid prevented the decrease of bcl-2 expression and the increase of bax expression caused by glutamate exposure. Moreover, retinoic acid attenuated the increases in caspase-3, cleaved caspase-3, and cytochrome c in glutamate-exposed neurons. However, the mitigation effects of retinoic acid were lower in thioredoxin siRNA-transfected neurons than in non-transfected neurons. These results demonstrate that retinoic acid regulates oxidative stress and thioredoxin expression, maintains the interaction between thioredoxin and ASK1, and modulates apoptosis-associated proteins. Taken together, these results suggest that retinoic acid has neuroprotective effects by regulating thioredoxin expression and modulating apoptotic pathway.Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.