-
- Ziying Lin, Yuen Ting Cheng, and Bernard Man Yung Cheung.
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China.
- Ann. Med. 2023 Dec 1; 55 (1): 22093362209336.
BackgroundHypokalaemia is a side-effect of diuretics. We aimed to use machine learning to identify features predicting hypokalaemia risk in hypertensive patients.MethodsParticipants with hypertension in the United States National Health and Nutrition Examination Survey 1999-2018 were included for analysis. To select the most suitable algorithm, we tested and evaluated five machine learning algorithms commonly employed in epidemiological studies: Logistic Regression, k-Nearest Neighbor, Random Forest, Recursive Partitioning and Regression Trees, and eXtreme Gradient Boosting. These algorithms were accessed using a set of 38 screened features. We then selected the key hypokalaemia-associated features in the hypertension group and their cardiovascular diseases (CVD) subgroup using the SHapley Additive exPlanations (SHAP) values. Using SHAP values, the key features and their impact pattern on hypokalaemia risk were determined.ResultsA total of 25,326 hypertensive participants were included for analysis, of whom 4,511 had known CVD. The Random Forest algorithm had the highest AUROC (hypertension dataset: 0.73 [95%CI, 0.71-0.76]; CVD subgroup: 0.72 [95%CI, 0.66-0.78]). Moreover, the nomogram based on the top twelve key features screened by random forest retained good performance: age, sex, race, poverty income ratio, body mass index, systolic and diastolic blood pressure, non-potassium-sparing diuretics use and duration, renin-angiotensin blockers use and duration, and CVD history in hypertension dataset; while in CVD subgroup, the additional key features were comorbid diabetes, education level, smoking status, and use of bronchodilators.ConclusionOur predictive model based on the random forest algorithm performed best among the tested and evaluated five algorithms. Hypokalaemia-associated key features have been identified in hypertensive patients and the subgroup with CVD. These findings from machine learning facilitate the development of artificial intelligence to highlight hypokalaemia risk in hypertension patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.