• Medicine · May 2023

    Review

    Challenges and chances coexist: A visualized analysis and bibliometric study of research on bioresorbable vascular scaffolds from 2000 to 2022.

    • Xiaohan Zhang, Zezhen Guo, Lihong Zhu, Yao Liu, Huan Wang, Yuchen Jiang, Bai Du, and Yuanhui Hu.
    • Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
    • Medicine (Baltimore). 2023 May 26; 102 (21): e33885e33885.

    BackgroundBioresorbable scaffolds (BVS) provide a transient supporting force for blocked vessels and allow them to return to previous physiological characteristics. After verification with twists and turns, it has been acknowledged as an emerging revolution in percutaneous coronary intervention that expresses the current concept of intervention without placement. Through this bibliometric study, we organized the knowledge structure of bioresorbable scaffolds and attempted to predict future research hotspots in this field.Methodsseven thousand sixty-three articles were retrieved from the web of science core collection database from 2000 to 2022. Then, we utilize CiteSpace 6.1.R2, Biblioshiny and VOS viewer 1.6.18 to analyze the data visually.ResultsFirst, according to the spatial analysis, the number of annual publications has shown an approximately increasing trend over the past 2 decades. The USA, the People's Republic of China, and GERMANY published the most articles on bioresorbable scaffolds. Second, SERRUYS P ranked first for his most prolific work and highest cited frequency in this domain. Third, the hotspots in this field can be inferred from the keyword distribution; they were the fabrication technique based on tissue engineering; the factors to be optimized for bioresorbable scaffolds, such as mechanical property, degradation, and implantation; and the common adverse effects of bioresorbable scaffolds, such as thrombosis. Most importantly, in terms of burst detection, we could speculate that cutting-edge technology for manufacturing scaffolds represented by 3D printing constitutes the future hotspots in bioresorbable scaffold development.ConclusionIn the first visualized bibliometric analysis of BVS, we attempt to provide a panoramic view. By enrolling extensive literature, we review the growing trend of BVSs. Since its first introduction, it has been through periods of early prosperity, questioned safety subsequently and the resultantly advanced techniques in recent years. In future, the research should focus on utilizing novel techniques to consummate the manufacturing quality and assure the safety of BVSs.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.