• Respiratory care · Sep 2023

    In Vitro Model for Analysis of High-Flow Aerosol Delivery During Continuous Nebulization.

    • Michael McPeck, Jane Moon, Jeyanthan Jayakumaran, and Gerald C Smaldone.
    • Pulmonary, Critical Care and Sleep Medicine Division, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York.
    • Respir Care. 2023 Sep 1; 68 (9): 121312201213-1220.

    BackgroundTo understand the fate of aerosols delivered by high-flow nasal cannula using continuous nebulization, an open-source anatomical model was developed and validated with a modified real-time gamma ratemeter technique. Mass balance defined circuit losses. Responsiveness to infusion rate and device technology were tested.MethodsA nasal airway cast derived from a computed tomography scan was converted to a 3-dimensional-printed head and face structure connected to a piston ventilator (breathing frequency 30 breaths/min, tidal volume 750 mL, duty cycle 0.50). For mass balance experiments, saline mixed with Technetium-99m was infused for 1 h. Aerosol delivery was measured using a gamma ratemeter oriented to an inhaled mass filter at the hypopharynx of the model. Background and dead-space effects were minimized. All components were imaged by scintigraphy. Continuous nebulization was tested at infusion rates of 10-40 mL/h with gas flow of 60 L/min using a breath-enhanced jet nebulizer (BEJN), and a vibrating mesh nebulizer. Drug delivery rates were defined by the slope of ratemeter counts/min (CPM/min) versus time (min).ResultsThe major source of aerosol loss was at the nasal interface (∼25%). Significant differences in deposition on circuit components were seen between nebulizers. The nebulizer residual was higher for BEJN (P = .006), and circuit losses, including the humidifier, were higher for vibrating mesh nebulizer (P = .006). There were no differences in delivery to the filter and head model. For 60 L/min gas flow, as infusion pump flow was increased, the rate of aerosol delivery (CPM/min) increased, for BEJN from 338 to 8,111; for vibrating mesh nebulizer, maximum delivery was 2,828.ConclusionsThe model defined sites of aerosol losses during continuous nebulization and provided a realistic in vitro system for testing aerosol delivery during continuous nebulization. Real-time analysis can quantify effects of multiple changes in variables (nebulizer technology, infusion rate, gas flow, and ventilation) during a given experiment.Copyright © 2023 by Daedalus Enterprises.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.