• Transl Res · Oct 2023

    β-catenin/CBP activation of mTORC1 signaling promotes partial epithelial-mesenchymal states in head and neck cancer.

    • Eric R Reed, Stacy A Jankowski, Anthony J Spinella, Vikki Noonan, Robert Haddad, Kenichi Nomoto, Junji Matsui, Manish V Bais, Xaralabos Varelas, Maria A Kukuruzinska, and Stefano Monti.
    • Data Intensive Studies Center, Tufts University, Medford, Massachusetts; Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts; Bioinformatics Program, Boston University, Boston, Massachusetts. Electronic address: eric.reed@tufts.edu.
    • Transl Res. 2023 Oct 1; 260: 466046-60.

    AbstractHead and neck cancers, which include oral squamous cell carcinoma (OSCC) as a major subsite, exhibit cellular plasticity that includes features of an epithelial-mesenchymal transition (EMT), referred to as partial-EMT (p-EMT). To identify molecular mechanisms contributing to OSCC plasticity, we performed a multiphase analysis of single cell RNA sequencing (scRNAseq) data from human OSCC. This included a multiresolution characterization of cancer cell subgroups to identify pathways and cell states that are heterogeneously represented, followed by casual inference analysis to elucidate activating and inhibitory relationships between these pathways and cell states. This approach revealed signaling networks associated with hierarchical cell state transitions, which notably included an association between β-catenin-driven CREB-binding protein (CBP) activity and mTORC1 signaling. This network was associated with subpopulations of cancer cells that were enriched for markers of the p-EMT state and poor patient survival. Functional analyses revealed that β-catenin/CBP induced mTORC1 activity in part through the transcriptional regulation of a raptor-interacting protein, chaperonin containing TCP1 subunit 5 (CCT5). Inhibition of β-catenin-CBP activity through the use of the orally active small molecule, E7386, reduced the expression of CCT5 and mTORC1 activity in vitro, and inhibited p-EMT-associated markers and tumor development in a murine model of OSCC. Our study highlights the use of multiresolution network analyses of scRNAseq data to identify targetable signals for therapeutic benefit, thus defining an underappreciated association between β-catenin/CBP and mTORC1 signaling in head and neck cancer plasticity.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…