• Neuroscience · Aug 2023

    Research paper: Crosstalk of highly purified microglia and astrocytes in the frame of Toll-like receptor (TLR)2/1 activation.

    • Laura Zelenka, Michael Jarek, Dennis Pägelow, Robert Geffers, Kira van Vorst, and Marcus Fulde.
    • Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.
    • Neuroscience. 2023 Aug 21; 526: 256266256-266.

    AbstractThe major immune cells of the central nervous systems (CNS) are microglia and astrocytes, subsets of the glial cell population. The crosstalk between glia via soluble signaling molecules plays an indispensable role for neuropathologies, brain development as well as homeostasis. However, the investigation of the microglia-astrocyte crosstalk has been hampered due to the lack of suitable glial isolation methods. In this study, we investigated for the first time the crosstalk between highly purified Toll-like receptor (TLR)2-knock out (TLR2-KO) and wild-type (WT) microglia and astrocytes. We examined the crosstalk of TLR2-KO microglia and astrocytes in the presence of WT supernatants of the respective other glial cell type. Interestingly, we observed a significant TNF release by TLR2-KO astrocytes, which were activated with Pam3CSK4-stimulated WT microglial supernatants, strongly indicating a crosstalk between microglia and astrocytes after TLR2/1 activation. Furthermore, transcriptome analysis using RNA-seq revealed a wide range of significant up- and down-regulated genes such as Cd300, Tnfrsf9 or Lcn2, which might be involved in the molecular conversation between microglia and astrocytes. Finally, co-culturing microglia and astrocytes confirmed the prior results by demonstrating a significant TNF release by WT microglia co-cultured with TLR2-KO astrocytes. Our findings suggest a molecular TLR2/1-dependent conversation between highly pure activated microglia and astrocytes via signaling molecules. Furthermore, we demonstrate the first crosstalk experiments using ∼100% pure microglia and astrocyte mono-/co-cultures derived from mice with different genotypes highlighting the urgent need of efficient glial isolation protocols, which particularly holds true for astrocytes.Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.