• Medicine · Jul 2023

    Exploring the active components and mechanism of modified bazhen decoction in treatment of chronic cerebral circulation insufficiency based on network pharmacology and molecular docking.

    • Zhongbo Xu, Manyang Shen, and Lin Li.
    • Emergency Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China.
    • Medicine (Baltimore). 2023 Jul 21; 102 (29): e34341e34341.

    AbstractModified bazhen decoction (MBZD) is a classical Chinese medicine formula with potential efficacy in the treatment of chronic cerebral circulation insufficiency (CCCI), and its main components and potential mechanisms are still unclear. The study aimed to investigate the active ingredients and mechanism of action of MBZD in treating CCCI through network pharmacology combined with molecular docking. The chemical composition and targets of 11 Chinese herbs in MBZD were retrieved utilizing the traditional Chinese medicine systems pharmacology database and analysis platform platform, and the targets for CCCI were screened by Genecards, online mendelian inheritance in man, therapeutic target database, and comparative toxicogenomics database databases. The targets were genetically annotated with the Uniprot database. We created a compound-target network employing Cytoscape software and screened the core targets for the treatment of CCCI by CytoNCA clustering analysis; the AutoDock Vina program performed molecular docking study of crucial targets. One thousand one hundred ninety-one active compounds were obtained, 2210 corresponding targets were predicted, 4971 CCCI-related targets were obtained, and 136 intersecting genes were identified between them. The central core targets were IL6, MAPK14, signal transducer and activator of transcription 3, RELA, VEGFA, CCND1, CASP3, AR, FOS, JUN, EGFR, MAPK1, AKT1, MYC, and ESR1; gene ontology functional enrichment analysis yielded 911 gene ontology items (P < .01), while Kyoto Encyclopedia of Genes and Genomes pathway enrichment yielded 138 signal pathways (P < .01), primarily including oxidative reactions, vascular regulation, apoptosis, and PI3K-Akt signaling pathway. The molecular docking results showed that the core active component of MBZD had good binding with the main target. This research initially uncovered the mechanism of action of MBZD via multi-component-multi-target-multi-pathway for the treatment of CCCI, providing the theoretical basis for the clinical application of MBZD.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.