• Chinese medical journal · Feb 2024

    Non-invasive imaging of pathological scars using a portable handheld two-photon microscope.

    • Yang Han, Yuxuan Sun, Feili Yang, Qingwu Liu, Wenmin Fei, Wenzhuo Qiu, Junjie Wang, Linshuang Li, Xuejun Zhang, Aimin Wang, and Yong Cui.
    • Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
    • Chin. Med. J. 2024 Feb 5; 137 (3): 329337329-337.

    BackgroundPathological scars are a disorder that can lead to various cosmetic, psychological, and functional problems, and no effective assessment methods are currently available. Assessment and treatment of pathological scars are based on cutaneous manifestations. A two-photon microscope (TPM) with the potential for real-time non-invasive assessment may help determine the under-surface pathophysiological conditions in vivo . This study used a portable handheld TPM to image epidermal cells and dermal collagen structures in pathological scars and normal skin in vivo to evaluate the effectiveness of treatment in scar patients.MethodsFifteen patients with pathological scars and three healthy controls were recruited. Imaging was performed using a portable handheld TPM. Five indexes were extracted from two dimensional (2D) and three dimensional (3D) perspectives, including collagen depth, dermo-epidermal junction (DEJ) contour ratio, thickness, orientation, and occupation (proportion of collagen fibers in the field of view) of collagen. Two depth-dependent indexes were computed through the 3D second harmonic generation image and three morphology-related indexes from the 2D images. We assessed index differences between scar and normal skin and changes before and after treatment.ResultsPathological scars and normal skin differed markedly regarding the epidermal morphological structure and the spectral characteristics of collagen fibers. Five indexes were employed to distinguish between normal skin and scar tissue. Statistically significant differences were found in average depth ( t = 9.917, P <0.001), thickness ( t = 4.037, P <0.001), occupation ( t = 2.169, P <0.050), orientation of collagen ( t = 3.669, P <0.001), and the DEJ contour ratio ( t = 5.105, P <0.001).ConclusionsUse of portable handheld TPM can distinguish collagen from skin tissues; thus, it is more suitable for scar imaging than reflectance confocal microscopy. Thus, a TPM may be an auxiliary tool for scar treatment selection and assessing treatment efficacy.Copyright © 2024 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.