• Preventive medicine · Oct 2023

    Application of IoT technology based on neural networks in basketball training motion capture and injury prevention.

    • Zhao Ang.
    • Hui Shang Vocational College, Hefei 230022, China. Electronic address: Za198307@126.com.
    • Prev Med. 2023 Oct 1; 175: 107660107660.

    AbstractBasketball players need to frequently engage in various physical movements during the game, which puts a certain burden on their bodies and can easily lead to various sports injuries. Therefore, it is crucial to prevent sports injuries in basketball teaching. This paper also studies basketball motion track capture. Basketball motion capture preserves the motion posture information of the target person in three-dimensional space. Because the motion capture system based on machine vision often encounters problems such as occlusion or self occlusion in the application scene, human motion capture is still a challenging problem in the current research field. This article designs a multi perspective human motion trajectory capture algorithm framework, which uses a two-dimensional human motion pose estimation algorithm based on deep learning to estimate the position distribution of human joint points on the two-dimensional image from each perspective. By combining the knowledge of camera poses from multiple perspectives, the three-dimensional spatial distribution of joint points is transformed, and the final evaluation result of the target human 3D pose is obtained. This article applies the research results of neural networks and IoT devices to basketball motion capture methods, further developing basketball motion capture systems.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.