• Neuroscience · Nov 2023

    Improving Alzheimer Diagnoses with an interpretable Deep Learning Framework: including Neuropsychiatric Symptoms.

    • Shujuan Liu, Yuanjie Zheng, Hongzhuang Li, Minmin Pan, Zhicong Fang, Mengting Liu, Yuchuan Qiao, Ningning Pan, Weikuan Jia, and Xinting Ge.
    • School of Information Science and Engineering, Shandong Normal University, Shandong, China.
    • Neuroscience. 2023 Nov 1; 531: 869886-98.

    AbstractAlzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the progressive cognitive decline. Among the various clinical symptoms, neuropsychiatric symptoms (NPS) commonly occur during the course of AD. Previous researches have demonstrated a strong association between NPS and severity of AD, while the research methods are not sufficiently intuitive. Here, we report a hybrid deep learning framework for AD diagnosis using multimodal inputs such as structural MRI, behavioral scores, age, and gender information. The framework uses a 3D convolutional neural network to automatically extract features from MRI. The imaging features are passed to the Principal Component Analysis for dimensionality reduction, which fuse with non-imaging information to improve the diagnosis of AD. According to the experimental results, our model achieves an accuracy of 0.91 and an area under the curve of 0.97 in the task of classifying AD and cognitively normal individuals. SHapley Additive exPlanations are used to visually exhibit the contribution of specific NPS in the proposed model. Among all behavioral symptoms, apathy plays a particularly important role in the diagnosis of AD, which can be considered a valuable factor in further studies, as well as clinical trials.Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…