-
Preventive medicine · Oct 2023
A new metabolic syndrome prediction model for self-evaluation as a primary screening tool in an apparently MetS-free population.
- Sabrina Sherman-Hahn, Elena Izkhakov, Saritte Perlman, and Tomer Ziv-Baran.
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Prev Med. 2023 Oct 1; 175: 107701107701.
BackgroundMetabolic syndrome (MetS) is a growing global public health concern associated with increased morbidity and mortality. The study aimed to establish a simple self-evaluated prediction model to identify MetS.MethodsA cross-sectional study based on the American National Health and Nutrition Examination Survey database was performed. Participants aged ≥20 in the 2009-2018 surveys, with no current pregnancy or major morbidities, were included. The model was built with data from 2009 to 2016 and validated using 2017-2018 data. MetS was defined according to AHA/NHLBI guidelines. Multivariable logistic regression was applied to build a prediction model. The area under the receiver operating characteristic curve (AUC) was used to assess the discrimination ability and the maximal Youden's index was used to identify the optimal cut-off value.ResultsThe study included 4245 individuals (median age 37, IQR 28-49, 51.8% females) in the training group and 911 individuals (median age 37, IQR 28-52, 52.5% females) in the validation group. Older age, male gender, non-Black race, no postsecondary education, and higher BMI were significantly associated with increased risk of MetS. The final model included age, gender, race, education, and BMI, and showed good discrimination ability (AUC = 0.810, 95% CI 0.793-0.827, sensitivity 80.4%, specificity 66.2%, positive likelihood ratio 2.379, negative likelihood ratio 0.296, PPV 59.6% and NPV 84.5%).ConclusionA new model for self-evaluation may serve as a primary, easy-to-use screening tool to identify MetS in an apparently MetS-free population. A simple application may serve for primary and secondary prevention, thus enabling risk reduction in the development of cardiovascular morbidity and health expenditure.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.