• Anesthesiology · Jan 2024

    Effect of propofol on heart rate and its coupling to cortical slow waves in humans.

    • Marco S Fabus, Jamie W Sleigh, and Catherine E Warnaby.
    • Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, and Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom.
    • Anesthesiology. 2024 Jan 1; 140 (1): 627262-72.

    BackgroundPropofol causes significant cardiovascular depression and a slowing of neurophysiological activity. However, literature on its effect on the heart rate remains mixed, and it is not known whether cortical slow waves are related to cardiac activity in propofol anesthesia.MethodsThe authors performed a secondary analysis of electrocardiographic and electroencephalographic data collected as part of a previously published study where n = 16 healthy volunteers underwent a slow infusion of propofol up to an estimated effect-site concentration of 4 µg/ml. Heart rate, heart rate variability, and individual slow electroencephalographic waves were extracted for each subject. Timing between slow-wave start and the preceding R-wave was tested against a uniform random surrogate. Heart rate data were further examined as a post hoc analysis in n = 96 members of an American Society of Anesthesiologists Physical Status II/III older clinical population collected as part of the AlphaMax trial.ResultsThe slow propofol infusion increased the heart rate in a dose-dependent manner (mean ± SD, increase of +4.2 ± 1.5 beats/min/[μg ml-1]; P < 0.001). The effect was smaller but still significant in the older clinical population. In healthy volunteers, propofol decreased the electrocardiogram R-wave amplitude (median [25th to 75th percentile], decrease of -83 [-245 to -28] μV; P < 0.001). Heart rate variability showed a loss of high-frequency parasympathetic activity. Individual cortical slow waves were coupled to the heartbeat. Heartbeat incidence peaked about 450 ms before slow-wave onset, and mean slow-wave frequency correlated with mean heart rate.ConclusionsThe authors observed a robust increase in heart rate with increasing propofol concentrations in healthy volunteers and patients. This was likely due to decreased parasympathetic cardioinhibition. Similar to non-rapid eye movement sleep, cortical slow waves are coupled to the cardiac rhythm, perhaps due to a common brainstem generator.Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Society of Anesthesiologists.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.