• Medicine · Oct 2023

    COVID-19 studies involving machine learning methods: A bibliometric study.

    • Baygül EdenArzuA0000-0003-0392-6709Koç University, School of Medicine, Department of Biostatistics, Istanbul, Turkey., Alev Bakir Kayi, Mustafa Genco Erdem, and Mehmet Demirci.
    • Koç University, School of Medicine, Department of Biostatistics, Istanbul, Turkey.
    • Medicine (Baltimore). 2023 Oct 27; 102 (43): e35564e35564.

    BackgroundMachine learning (ML) and artificial intelligence (AI) techniques are gaining popularity as effective tools for coronavirus disease of 2019 (COVID-19) research. These strategies can be used in diagnosis, prognosis, therapy, and public health management. Bibliometric analysis quantifies the quality and impact of scholarly publications. ML in COVID-19 research is the focus of this bibliometric analysis.MethodsA comprehensive literature study found ML-based COVID-19 research. Web of Science (WoS) was used for the study. The searches included "machine learning," "artificial intelligence," and COVID-19. To find all relevant studies, 2 reviewers searched independently. The network visualization was analyzed using VOSviewer 1.6.19.ResultsIn the WoS Core, the average citation count was 13.6 ± 41.3. The main research areas were computer science, engineering, and science and technology. According to document count, Tao Huang wrote 14 studies, Fadi Al-Turjman wrote 11, and Imran Ashraf wrote 11. The US, China, and India produced the most studies and citations. The most prolific research institutions were Harvard Medical School, Huazhong University of Science and Technology, and King Abdulaziz University. In contrast, Nankai University, Oxford, and Imperial College London were the most mentioned organizations, reflecting their significant research contributions. First, "Covid-19" appeared 1983 times, followed by "machine learning" and "deep learning." The US Department of Health and Human Services funded this topic most heavily. Huang Tao, Feng Kaiyan, and Ashraf Imran pioneered bibliographic coupling.ConclusionThis study provides useful insights for academics and clinicians studying COVID-19 using ML. Through bibliometric data analysis, scholars can learn about highly recognized and productive authors and countries, as well as the publications with the most citations and keywords. New data and methodologies from the pandemic are expected to advance ML and AI modeling. It is crucial to recognize that these studies will pioneer this subject.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…