• Neuroscience · Dec 2023

    FGIN-1-27 Mitigates Radiation-induced Mitochondrial Hyperfunction and Cellular Hyperactivation in Cultured Astrocytes.

    • Shifeng Zhang, Zhezhi Deng, Yuemin Qiu, Gengxin Lu, Junyu Wu, and Haiwei Huang.
    • Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
    • Neuroscience. 2023 Dec 15; 535: 233523-35.

    AbstractRadiation-induced brain injury (RBI) poses a significant challenge in the context of radiotherapy for intracranial tumors, necessitating a comprehensive understanding of the cellular and molecular mechanisms involved. While prior investigations have underscored the role of astrocyte activation and excessive vascular endothelial growth factor production in microvascular damage associated with RBI, there remains a scarcity of studies examining the impact of radiation on astrocytes, particularly regarding organelles such as mitochondria. Thus, our study aimed to elucidate alterations in astrocyte and mitochondrial functionality following radiation exposure, with a specific focus on evaluating the potential ameliorative effects of translocator protein 18 kDa(TSPO) ligands. In this study, cultured astrocytes were subjected to X-ray irradiation, and their cellular states and mitochondrial functions were examined and compared to control cells. Our findings revealed that radiation-induced astrocytic hyperactivation, transforming them into the neurotoxic A1-type, concomitant with reduced cell proliferation. Additionally, radiation triggered mitochondrial hyperfunction, heightened the mitochondrial membrane potential, and increased oxidative metabolite production. However, following treatment with FGIN-1-27, a TSPO ligand, we observed a restoration of mitochondrial function and a reduction in oxidative metabolite production. Moreover, this intervention mitigated astrocyte hyperactivity, decreased the number of A1-type astrocytes, and restored cell proliferative capacity. In conclusion, our study has unveiled additional manifestations of radiation-induced astrocyte dysfunction and validated that TSPO ligands may serve as a promising therapeutic strategy to mitigate this dysfunction. It has potential clinical implications for the treatment of RBI.Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.