• Medicine · Nov 2023

    Exploring the pathogenesis of depression and potential antidepressants through the integration of reverse network pharmacology, molecular docking, and molecular dynamics.

    • Zhongwen Lu, Fei Gao, Fei Teng, Xuanhe Tian, Haowei Guan, Jiawen Li, Xianshuai Wang, Jing Liang, Qiangyuan Tian, and Jin Wang.
    • College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
    • Medicine (Baltimore). 2023 Nov 3; 102 (44): e35793e35793.

    AbstractDepression is characterized by a significant and persistent decline in mood and is currently a major threat to physical and mental health. Traditional Chinese medicine can effectively treat depression with few adverse effects. Therefore, this study aimed to examine the use of reverse network pharmacology and computer simulations to identify effective ingredients and herbs for treating depression. Differentially expressed genes associated with depression were obtained from the Gene Expression Omnibus database, after which enrichment analyses were performed. A protein-protein interaction network was constructed using the STRING database to screen core targets. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to screen ingredients related to these core targets, and the core ingredients were screened by constructing the "Targets-Ingredients-Herbs" network. Drug evaluation analysis was performed using the SwissADME and ADMETlab platforms, according to Lipinski Rule of 5. The binding between the targets and ingredients was simulated using molecular docking software. The binding stability was determined using molecular dynamics analysis. The "Ingredients-Herbs" network was constructed, and we annotated it for its characteristics and meridians. Finally, the selected herbs were classified to determine the formulation for treating depression in traditional Chinese medicine. The pathogenesis of depression was associated with changes in SPP1, Plasminogen activator inhibitor 1, CCNB1 protein, CCL3, and other genes. Computer simulations have verified the use of quercetin, luteolin, apigenin, and other ingredients as drugs for treating depression. Most of the top 10 herbs containing these ingredients were attributed to the liver meridian, and their taste was symplectic. Perilla Frutescen, Cyperi Rhizoma, and Linderae Radix, the main components of "Tianxiang Zhengqi Powder," can treat depression owing to Qi stagnation. Epimedium and Citicola, the main traditional Chinese herbs in "Wenshen Yiqi Decoction," have a positive effect on depression of the Yang asthenia type. Fructus Ligustri Lucidi and Ecliptae Herba are from the classic prescription "Erzhi Pills" and can treat depression of the Yin deficiency type. This study identified the key targets and effective medicinal herbs for treating depression. It provides herbal blend references for treating different types of depression according to the theory of traditional Chinese medicine.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.