• Medicine · Nov 2023

    Randomized Controlled Trial

    Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma.

    • Xianguo Li, Haijun Bao, Yongping Shi, Wenzhong Zhu, Zuojie Peng, Lizhao Yan, Jinhuang Chen, and Xiaogang Shu.
    • Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
    • Medicine (Baltimore). 2023 Nov 10; 102 (45): e35892e35892.

    AbstractAccurately predicting survival in patients with early hepatocellular carcinoma (HCC) is essential for making informed decisions about treatment and prognosis. Herein, we have developed a machine learning (ML) model that can predict patient survival and guide treatment decisions. We obtained patient demographic information, tumor characteristics, and treatment details from the SEER database. To analyze the data, we employed a Cox proportional hazards (CoxPH) model as well as 3 ML algorithms: neural network multitask logistic regression (N-MLTR), DeepSurv, and random survival forest (RSF). Our evaluation relied on the concordance index (C-index) and Integrated Brier Score (IBS). Additionally, we provided personalized treatment recommendations regarding surgery and chemotherapy choices and validated models' efficacy. A total of 1136 patients with early-stage (I, II) hepatocellular carcinoma (HCC) who underwent liver resection or transplantation were randomly divided into training and validation cohorts at a ratio of 3:7. Feature selection was conducted using Cox regression analyses. The ML models (NMLTR: C-index = 0.6793; DeepSurv: C-index = 0.7028; RSF: C-index = 0.6890) showed better discrimination in predicting survival than the standard CoxPH model (C-index = 0.6696). Patients who received recommended treatments had higher survival rates than those who received unrecommended treatments. ML-based surgery treatment recommendations yielded higher hazard ratios (HRs): NMTLR HR = 0.36 (95% CI: 0.25-0.51, P < .001), DeepSurv HR = 0.34 (95% CI: 0.24-0.49, P < .001), and RSF HR = 0.37 (95% CI: 0.26-0.52, P = <.001). Chemotherapy treatment recommendations were associated with significantly improved survival for DeepSurv (HR: 0.57; 95% CI: 0.4-0.82, P = .002) and RSF (HR: 0.66; 95% CI: 0.46-0.94, P = .020). The ML survival model has the potential to benefit prognostic evaluation and treatment of HCC. This novel analytical approach could provide reliable information on individual survival and treatment recommendations.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.