• Medicine · Nov 2023

    Network pharmacology to explore the molecular mechanisms of Prunella vulgaris for treating thyroid cancer.

    • Zhiqiang Zhang, Jiayi Zhou, Ruiqian Guo, Qijun Zhou, Lianzhi Wang, Xingyan Xiang, Sitong Ge, and Zhezhu Cui.
    • Otolaryngology Head and Neck Surgery Institute, The Affiliated Hospital of Yanbian University, Yanbian University, Jilin, China.
    • Medicine (Baltimore). 2023 Nov 10; 102 (45): e34871e34871.

    BackgroundThyroid cancer (TC) is the most common endocrine malignancy that has rapidly increased in global incidence. Prunella vulgaris (PV) has manifested therapeutic effects in patients with TC. We aimed to investigate its molecular mechanisms against TC and provide potential drug targets by using network pharmacology and molecular docking.MethodsThe ingredients of PV were retrieved from Traditional Chinese Medicine Systematic Pharmacology Database. TC-related gene sets were established using the GeneCard and OMIM databases. The establishment of the TC-PV target gene interaction network was accomplished using the STRING database. Cytoscape constructed networks for visualization. Protein-protein interaction, gene ontology and the biological pathway Kyoto encyclopedia of genes and genomes enrichment analyses were performed to discover the potential mechanism. Molecular docking technology was used to analyze the effective compounds from PV for treating TC.Results11 active compounds and 192 target genes were screened from PV. 177 potential targets were obtained by intersecting PV and TC gene sets. Network pharmacological analysis showed that the PV active ingredients including Vulgaxanthin-I, quercetin, Morin, Stigmasterol, poriferasterol monoglucoside, Spinasterol, kaempferol, delphinidin, stigmast-7-enol, beta-sitosterol and luteolin showed better correlation with TC target genes such as JUN, AKT1, mitogen-activated protein kinase 1, IL-6 and RELA. The gene ontology and Kyoto encyclopedia of genes and genomes indicated that PV can act by regulating the host defense and response to oxidative stress immune response and several signaling pathways are closely associated with TC, such as the TNF and IL-17. Protein-protein interaction network identified 8 hub genes. The molecular docking was conducted on the most significant gene MYC. Eleven active compounds of PV can enter the active pocket of MYC, namely poriferasterol monoglucoside, stigmasterol, beta-sitosterol, vulgaxanthin-I, spinasterol, stigmast-7-enol, luteolin, delphinidin, morin, quercetin and kaempferol. Further analysis showed that oriferasterol monoglucoside, followed by tigmasterol, were the potential therapeutic compound identified in PV for the treatment of TC.ConclusionThe network pharmacological strategy integrates molecular docking to unravel the molecular mechanism of PV. MYC is a promising drug target to reduce oxidative stress damage and potential anti-tumor effect. Oriferasterol monoglucoside and kaempferol were 2 bioactive compounds of PV to treat TC. This provides a basis to understand the mechanism of the anti-TC activity of PV.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…