• Resuscitation · Feb 2024

    Simple approach to quantify hypoxic-ischemic brain injury severity from computed tomography imaging files after cardiac arrest.

    • Nicholas P Case, Clifton W Callaway, Jonathan Elmer, Patrick J Coppler, and University of Pittsburgh Post-Cardiac Arrest Service.
    • Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
    • Resuscitation. 2024 Feb 1; 195: 110050110050.

    BackgroundGrey-white ratio (GWR) can estimate severity of cytotoxic cerebral edema secondary to hypoxic-ischemic brain injury after cardiac arrest and predict progression to death by neurologic criteria (DNC). Current approaches to calculating GWR are not standardized and have variable interrater reliability. We tested if measures of variance of brain density on early computed tomographic (CT) imaging after cardiac arrest could predict DNC.MethodsWe performed a retrospective cohort study, identifying post-arrest patients treated between 2011 and 2020 at our single center. We extracted demographic data from our registry and Digital Imaging and Communication in Medicine (DICOM) files for each patient's first brain CT. We analyzed slices 15-20 of each DICOM, corresponding to the level of the basal ganglia while accommodating differences in patient anatomy. We extracted pixel arrays and converted the radiodensities to Hounsfield units (HU). To focus on brain tissue densities, we excluded HU > 60 and < 10. We calculated the variance of each patient's HU distribution and the difference between the means of a two-group Gaussian finite mixture model. We compared these novel metrics to existing measures of cerebral edema, then randomly divided our data into 80% training and 20% test sets and used logistic regression to predict DNC.ResultsOf 1,133 included subjects, 457 (40%) were female, mean (standard deviation) age was 58 (16) years, and 115 (10%) progressed to DNC. CTs were obtained a median [interquartile range] of 4.2 [2.8-5.7] hours post-arrest. Our novel measures correlated weakly with GWR. HU variance, but not difference between mixture model means, differed significantly between subjects with and without sulcal or cistern effacement. GWR outperformed our novel measures in predicting progression to DNC with an area under the receiver operating characteristic curve (AUC) of 0.82, compared to HU variance (AUC = 0.73) and the difference between mixture model means (AUC = 0.56).ConclusionThere are differences in the distribution of HU on post-arrest CT in patients with qualitative measures of cerebral edema. Current methods to quantify cerebral edema outperform simple measures of attenuation variance on early brain CT. Further analyses could investigate if these measures of variance, or other distributional characteristics of brain density, have improved predictive performance on brain CTs obtained later in the clinical course or derived from discrete regions of anatomical interest.Copyright © 2023 Elsevier B.V. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…