• J Clin Anesth · May 2024

    Development and validation of delirium prediction models for noncardiac surgery patients.

    • Julian Rössler, Karan Shah, Sara Medellin, Alparslan Turan, Kurt Ruetzler, Mriganka Singh, Daniel I Sessler, and Kamal Maheshwari.
    • Department of Outcomes Research, Cleveland Clinic, Cleveland, OH, USA. Electronic address: julianroessler@icloud.com.
    • J Clin Anesth. 2024 May 1; 93: 111319111319.

    Study ObjectivePostoperative delirium is associated with morbidity and mortality, and its incidence varies widely. Using known predisposing and precipitating factors, we sought to develop postoperative delirium prediction models for noncardiac surgical patients.DesignRetrospective prediction model study.SettingMajor quaternary medical center.PatientsOur January 2016 to June 2020 training dataset included 51,677 patients of whom 2795 patients had delirium. Our July 2020 to January 2022 validation dataset included 14,438 patients of whom 912 patients had delirium.InterventionsNone.MeasurementsWe trained and validated two static prediction models and one dynamic delirium prediction model. For the static models, we used random survival forests and traditional Cox proportional hazard models to predict postoperative delirium from preoperative variables, or from a combination of preoperative and intraoperative variables. We also used landmark modeling to dynamically predict postoperative delirium using preoperative, intraoperative, and postoperative variables before onset of delirium.Main ResultsIn the validation analyses, the static random forest model had a c-statistic of 0.81 (95% CI: 0.79, 0.82) and a Brier score of 0.04 with preoperative variables only, and a c-statistic of 0.86 (95% CI: 0.84, 0.87) and a Brier score of 0.04 when preoperative and intraoperative variables were combined. The corresponding Cox models had similar discrimination metrics with slightly better calibration. The dynamic model - using all available data, i.e., preoperative, intraoperative and postoperative data - had an overall c-index of 0.84 (95% CI: 0.83, 0.85).ConclusionsUsing preoperative and intraoperative variables, simple static models performed as well as a dynamic delirium prediction model that also included postoperative variables. Baseline predisposing factors thus appear to contribute far more to delirium after noncardiac surgery than intraoperative or postoperative variables. Improved postoperative data capture may help improve delirium prediction and should be evaluated in future studies.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…