• Neuroscience · Jan 2024

    Phosphorylation of 4.1N by CaMKII regulates the trafficking of GluA1-containing AMPA receptors during long-term potentiation in acute rat hippocampal brain slices.

    • Jun Yang, Rui-Ning Ma, Jia-Min Dong, Shu-Qun Hu, Yong Liu, and Jing-Zhi Yan.
    • Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China.
    • Neuroscience. 2024 Jan 9; 536: 131142131-142.

    ObjectiveGluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) inserted into postsynaptic membranes are key to the process of long-term potentiation (LTP). Some evidence has shown that 4.1N plays a critical role in the membrane trafficking of AMPARs. However, the underlying mechanism behind this is still unclear. We investigated the role of 4.1N-mediated membrane trafficking of AMPARs during theta-burst stimulation long-term potentiation (TBS-LTP), to illustrate the molecular mechanism behind LTP.MethodsLTP was induced by TBS in rat hippocampal CA1 neuron. Tat-GluA1 (MPR), which disrupts the association of 4.1N-GluA1, and autocamtide-2-inhibitory peptide, myristoylated (Myr-AIP), a CaMKII antagonist, were used to explore the role of 4.1N in the AMPARs trafficking during TBS-induced LTP. Immunoprecipitation (IP) and immunoblotting (IB)were used to detect protein expression, phosphorylation, and the interaction of p-CaMKII-4.1N-GluA1.ResultsWe found that Myr-AIP attenuated increases of p-CaMKII (T286), p-GluA1 (ser831), and 4.1N phosphorylation after TBS-LTP, and decreased the association of p-CaMKII-4.1N-GluA1, along with the expression of GluA1, at postsynaptic densities during TBS-LTP. We also designed interfering peptides to disrupt the interaction between 4.1N and GluA1, which showed that Tat-GluA1 (MPR) or Myr-AIP inhibited TBS-LTP and attenuated increases of GluA1 at postsynaptic sites, while Tat-GluA1 (MPR) or Myr-AIP had no effects on miniature excitatory postsynaptic currents (mEPSCs) in non-stimulated hippocampal CA1 neurons.ConclusionActive CaMKII enhanced the phosphorylation of 4.1N and facilitated the association of p-CaMKII with 4.1N-GluA1, which in turn resulted in GluA1 trafficking during TBS-LTP. The association of 4.1N-GluA1 is required for LTP, but not for basal synaptic transmission.Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…