-
- Gauthier Everard, Sophie Boivin, Geneviève Boulay, Roxane Duchemin, and BatchoCharles SebiyoCSSchool of Rehabilitation Sciences, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Quebec, Canada. Electronic address: charle.
- School of Rehabilitation Sciences, Faculty of Medicine, Laval University, Quebec, QC, Canada; Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Quebec, Canada; Neuro Musculo Skeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, UCLouvain, Brussels, Belgium.
- Neuroscience. 2024 Jan 26; 537: 475747-57.
AbstractDespite the recommendation of improving assessment objectivity and frequency, the use of immersive virtual reality to measure and quantify movement quality remains underexplored. In this study, we aimed to evaluate the reliability, validity and usability of an immersive virtual reality application, KinematicsVR, to assess upper limb kinematics among older adults with and without major neurocognitive disorder. The KinematicsVR involves the drawing of three-dimensional straight lines, circles and squares using a controller in a virtual environment. Twenty-eight older adults with or without major neurocognitive disorder were recruited. Reliability was evaluated through correlations on test-retest and validity through correlations between KinematicsVR variables and other functional tests (TEMPA, BBT-VR and Finger-Nose Test). The usability of the KinematicsVR was assessed with the System Usability Scale questionnaire. Kinematic indexes were compared between eight adults with major neurocognitive disorder and eight matched controls. Results indicated that most variables provided by the KinematicsVR had excellent reliability for tasks involving the drawing of straight lines and circles, but moderate reliability for tasks involving the drawing of squares. Secondary analyses showed that the usability of the application was excellent but few significant and strong correlations were observed between variables of the KinematicsVR and the scores of the TEMPA scale, Finger-Nose Test and BBT-VR. Adults with major neurocognitive disorder, when compared to other older adults, made larger and less linear hand movements. These findings provide perspectives for the use of immersive virtual reality to improve assessment frequency and objectivity through the autonomous measure of upper limb kinematics in older adults.Copyright © 2023 IBRO. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.