• Neuroscience · Feb 2024

    A design and implementation of multi-character classification scheme based on motor imagery EEG signals.

    • Hongguang Pan, Yibo Zhang, Li Li, and Xuebin Qin.
    • College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; Xi'an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi'an 710054, China. Electronic address: honggunagpan@163.com.
    • Neuroscience. 2024 Feb 6; 538: 222922-29.

    AbstractIn the field of brain-to-text communication, it is difficult to finish highly dexterous behaviors of writing multi-character by motor-imagery-based brain-computer interface (MI-BCI), setting a barrier to restore communication in people who have lost the ability to move and speak. In this paper, we design and implement a multi-character classification scheme based on 29 characters of motor imagery (MI) electroencephalogram (EEG) signals, which contains 26 English letters and 3 punctuation marks. Firstly, we design a novel experimental paradigm to increase the variety of BCI inputs by asking subjects to imagine the movement of writing 29 characters instead of gross motor skills such as reaching or grasping. Secondly, because of the high dimension of EEG signals, we adopt power spectral density (PSD), principal components analysis (PCA), kernel principal components analysis (KPCA) respectively to decompose EEG signals and extract feature, and then test the results with pearson product-moment correlation coefficient (PCCs). Thirdly, we respectively employ k-nearest neighbor (kNN), support vector machine (SVM), extreme learning machine (ELM) and light gradient boosting machine (LightGBM) to classify 29 characters and compare the results. We have implemented a complete scheme, including paradigm design, signal acquisition, feature extraction and classification, which can effectively classify 29 characters. The experimental results show that the KPCA has the best feature extraction effect and the kNN has the highest classification accuracy, with the final classification accuracy reaching 96.2%, which is better than other studies.Copyright © 2023 IBRO. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.