-
Patient Prefer Adher · Jan 2023
A Quantitative Framework for Medication Non-Adherence: Integrating Patient Treatment Expectations and Preferences.
- Charles Muiruri, Eline M van den Broek-Altenburg, Hayden B Bosworth, Crystal W Cené, and Juan Marcos Gonzalez.
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.
- Patient Prefer Adher. 2023 Jan 1; 17: 313531453135-3145.
IntroductionMedication non-adherence remains a significant challenge in healthcare, impacting treatment outcomes and the overall effectiveness of medical interventions. This article introduces a novel approach to understanding and predicting medication non-adherence by integrating patient beliefs, efficacy expectations, and perceived costs. Existing theoretical models often fall short in quantifying the impact of barrier removal on medication adherence and struggle to address cases where patients consciously choose not to follow prescribed medication regimens. In response to these limitations, this study presents an empirical framework that seeks to provide a quantifiable model for both individual and population-level prediction of non-adherence under different scenarios.MethodsWe present an empirical framework that includes a health production function, specifically applied to antihypertensive medications nonadherence. Data collection involved a pilot study that utilized a double-bound contingent-belief (DBCB) questionnaire. Through this questionnaire, participants could express how efficacy and side effects were affected by controlled levels of non-adherence, allowing for the estimation of sensitivity in health outcomes and costs.ResultsParameters derived from the DBCB questionnaire revealed that on average, patients with hypertension anticipated that treatment efficacy was less sensitive to non-adherence than side effects. Our derived health production function suggests that patients may strategically manage adherence to minimize side effects, without compromising efficacy. Patients' inclination to manage medication intake is closely linked to the relative importance they assign to treatment efficacy and side effects. Model outcomes indicate that patients opt for full adherence when efficacy outweighs side effects. Our findings also indicated an association between income and patient expectations regarding the health of antihypertensive medications.ConclusionOur framework represents a pioneering effort to quantitatively link non-adherence to patient preferences. Preliminary results from our pilot study of patients with hypertension suggest that the framework offers a viable alternative for evaluating the potential impact of interventions on treatment adherence.© 2023 Muiruri et al.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.