-
J. Clin. Endocrinol. Metab. · Oct 2006
ReviewHypothalamic pituitary adrenal function during critical illness: limitations of current assessment methods.
- Baha M Arafah.
- Division of Clinical and Molecular Endocrinology, University Hospitals/Case Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA. baha.arafah@case.edu
- J. Clin. Endocrinol. Metab. 2006 Oct 1;91(10):3725-45.
ContextActivation of the hypothalamic-pituitary-adrenal (HPA) axis represents one of several important responses to stressful events and critical illnesses. Despite a large volume of published data, several controversies continue to be debated, such as the definition of normal adrenal response, the concept of relative adrenal insufficiency, and the use of glucocorticoids in the setting of critical illness.ObjectivesThe primary objective was to review some of the modulating factors and limitations of currently used methods of assessing HPA function during critical illness and provide alternative approaches in that setting.DesignThis was a critical review of relevant data from the literature with inclusion of previously published as well as unpublished observations by the author. Data on HPA function during three different forms of critical illnesses were reviewed: experimental endotoxemia in healthy volunteers, the response to major surgical procedures in patients with normal HPA, and the spontaneous acute to subacute critical illnesses observed in patients treated in intensive care units.SettingThe study was conducted at an academic medical center.Patients/ParticipantsParticipants were critically ill subjects.InterventionThere was no intervention.Main Outcome MeasureThe main measure was to provide data on the superiority of measuring serum free cortisol during critical illness as contrasted to those of total cortisol measurements.ResultsSerum free cortisol measurement is the most reliable method to assess adrenal function in critically ill, hypoproteinemic patients. A random serum free cortisol is expected to be 1.8 microg/dl or more in most critically ill patients, irrespective of their serum binding proteins. Because the free cortisol assay is not currently available for routine clinical use, alternative approaches to estimate serum free cortisol can be used. These include calculated free cortisol (Coolens' method) and determining the free cortisol index (ratio of serum cortisol to transcortin concentrations). Preliminary data suggest that salivary cortisol measurements might be another alternative approach to estimating the free cortisol in the circulation. When serum binding proteins (albumin, transcortin) are near normal, measurements of total serum cortisol continue to provide reliable assessment of adrenal function in critically ill patients, in whom a random serum total cortisol would be expected to be 15 microg/dl or more in most patients. In hypoproteinemic critically ill subjects, a random serum total cortisol level is expected to be 9.5 microg/dl or more in most patients. Data on Cosyntropin-stimulated serum total and free cortisol levels should be interpreted with the understanding that the responses in critically ill subjects are higher than those of healthy ambulatory volunteers. The Cosyntropin-induced increment in serum total cortisol should not be used as a criterion for defining adrenal function, especially in critically ill patients.ConclusionsThe routine use of glucocorticoids during critical illness is not justified except in patients in whom adrenal insufficiency was properly diagnosed or others who are hypotensive, septic, and unresponsive to standard therapy. When glucocorticoids are used, hydrocortisone should be the drug of choice and should be given at the lowest dose and for the shortest duration possible. The hydrocortisone dose (50 mg every 6 h) that is mistakenly labeled as low-dose hydrocortisone leads to excessive elevation in serum cortisol to values severalfold greater than those achieved in patients with documented normal adrenal function. The latter data should call into question the current practice of using such doses of hydrocortisone even in the adrenally insufficient subjects.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.