• Neuroscience · Mar 2024

    EGR1 regulates SHANK3 transcription at different stages of brain development.

    • Chen-Xia Juan, Yan Mao, Xiao Han, Hua-Ying Qian, and Kang-Kang Chu.
    • Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China; Child Mental Health Research Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
    • Neuroscience. 2024 Mar 5; 540: 273727-37.

    AbstractThe expression levels of SHANK3 are associated with autism spectrum disorder (ASD). The dynamic changes in SHANK3 expression during different stages of brain development may impact the progression of ASD. However, no studies or detailed analyses exploring the upstream mechanisms that regulate SHANK3 expression have been reported. In this study, we employed immunofluorescence to examine the expression of SHANK3 in brain organoids at various stages. Our results revealed elevated levels of SHANK3 expression in brain-like organoids at Day 60. Additionally, we utilized bioinformatics software to predict and analyze the SHANK3 gene's transcription start site. Through the dual luciferase reporter gene technique, we identified core transcription elements within the SHANK3 promoter. Site-directed mutations were used to identify specific transcription sites of SHANK3. To determine the physical binding of potential transcription factors to the SHANK3 promoter, we employed electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Our findings demonstrated that the transcription factor EGR1 regulates SHANK3 expression by binding to the transcription site of the SHANK3 promoter. Although this study did not investigate the pathological phenotypes of human brain organoids or animal model brains with EGR1 deficiency, which could potentially substantiate the findings observed for SHANK3 mutants, our findings provide valuable insights into the relationship between the transcription factor, EGR1, and SHANK3. This study contributes to the molecular understanding of ASD and offers potential foundations for precise targeted therapy.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.