• Eur. J. Neurosci. · Sep 2010

    Long-lasting modulation of synaptic plasticity in rat hippocampus after early-life complex febrile seizures.

    • Robbert G E Notenboom, Geert M J Ramakers, Amer Kamal, Berry M Spruijt, and Pierre N E de Graan.
    • Rudolf Magnus Institute of Neuroscience, Department of Neuroscience & Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands. r.g.e.notenboom@lumc.nl
    • Eur. J. Neurosci. 2010 Sep 1;32(5):749-58.

    AbstractA small fraction of children with febrile seizures appears to develop cognitive impairments. Recent studies in a rat model of hyperthermia-induced febrile seizures indicate that prolonged febrile seizures early in life have long-lasting effects on the hippocampus and induce cognitive deficits. However, data on network plasticity and the nature of cognitive deficits are conflicting. We examined three specific measures of hippocampal plasticity in adult rats with a prior history of experimental febrile seizures: (i) activity-dependent synaptic plasticity (long-term potentiation and depression) by electrophysiological recordings of Schaffer collateral/commissural-evoked field excitatory synaptic potentials in CA1 of acute hippocampal slices; (ii) Morris water maze spatial learning and memory; and (iii) hippocampal mossy fiber plasticity by Timm histochemistry and quantification of terminal sprouting in CA3 and the dentate gyrus. We found enhanced hippocampal CA1 long-term potentiation and reduced long-term depression but normal spatial learning and memory in adult rats that were subjected to experimental febrile seizures on postnatal day 10. Furthermore, rats with experimental febrile seizures showed modest but significant sprouting of mossy fiber collaterals into the inner molecular layer of the dentate gyrus in adulthood. We conclude that enhanced CA1 long-term potentiation and mild mossy fiber sprouting occur after experimental febrile seizures, without affecting spatial learning and memory in the Morris water maze. These long-term functional and structural alterations in hippocampal plasticity are likely to play a role in the enhanced seizure susceptibility in this model of prolonged human febrile seizures but do not correlate with overt cognitive deficits.© 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.