The European journal of neuroscience
-
Eccentric muscle exercise is a common cause of acute and chronic (lasting days to weeks) musculoskeletal pain. To evaluate the mechanisms involved, we have employed a model in the rat, in which eccentric hind limb exercise produces both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to subsequent exposure to an inflammatory mediator. Eccentric exercise of the hind limb produced mechanical hyperalgesia, measured in the gastrocnemius muscle, which returned to baseline at 120 h post-exercise. ⋯ This marked prolongation of PGE(2) hyperalgesia induced by eccentric exercise was prevented by the spinal intrathecal injection of oligodeoxynucleotide antisense to protein kinase Cε, a second messenger in nociceptors implicated in the induction of chronic pain. Exercise-induced hyperalgesia and prolongation of PGE(2) hyperalgesia were inhibited by the spinal intrathecal administration of antisense for the interleukin-6 but not the tumor necrosis factor α type 1 receptor. These findings provide further insight into the mechanism underlying exercise-induced chronic muscle pain, and suggest novel approaches for the prevention and treatment of exercise- or work-related chronic musculoskeletal pain syndromes.
-
Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) is a key mediator of long-term potentiation (LTP), which can be triggered by N-methyl-d-aspartate (NMDA) receptor-mediated Ca(2+) influx. We previously demonstrated that Fyn kinase-mediated phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 in the dorsal horn was involved in a neuropathic pain state even 1 week after nerve injury. Here we show that Y1472F-KI mice with a knock-in mutation of the Tyr1472 site to phenylalanine did not exhibit neuropathic pain induced by L5 spinal nerve transection, whereas they did retain normal nociceptive responses and induction of inflammatory pain. ⋯ There was no difference in the Ca(2+) response to glutamate and sensitivity to NMDA receptor antagonists between naive wild-type and Y1472F-KI mice, and the Ca(2+) response to glutamate was attenuated in the Y1472F-KI mice after nerve injury. Autophosphorylation of CaMKII at Thr286 was markedly impaired in Y1472F-KI mice after nerve injury, but there was no difference in phosphorylation of CaMKII at Thr305 or protein kinase Cγ at Thr674, and activation of neuronal nitric oxide synthase and microglia in the superficial layer of spinal cord between wild-type and Y1472F-KI mice after the operation. These results demonstrate that the attenuation of neuropathic pain is caused by the impaired NMDA receptor-mediated CaMKII signaling in Y1472F-KI mice, and suggest that autophosphorylation of CaMKII at Thr286 plays a central part not only in LTP, but also in persistent neuropathic pain.
-
A major dose-limiting side effect of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) chemotherapies, such as the nucleoside reverse transcriptase inhibitors (NRTIs), is a small-fiber painful peripheral neuropathy, mediated by its mitochondrial toxicity. Co-morbid conditions may also contribute to this dose-limiting effect of HIV/AIDS treatment. Alcohol abuse, which alone also produces painful neuropathy, is one of the most important co-morbid risk factors for peripheral neuropathy in patients with HIV/AIDS. ⋯ At low doses, ddC (5 mg/kg) and alcohol (6.5% ethanol diet for 1 week), which alone do not affect nociception, together produce profound mechanical hyperalgesia. This hyperalgesia is mitochondrial-dependent but PKCε-independent. These experiments, which provide the first model for studying the impact of co-morbidity in painful neuropathy, support the clinical impression that alcohol consumption enhances HIV/AIDS therapy neuropathy, and provide evidence for a role of mitochondrial mechanisms underlying this interaction.
-
A small fraction of children with febrile seizures appears to develop cognitive impairments. Recent studies in a rat model of hyperthermia-induced febrile seizures indicate that prolonged febrile seizures early in life have long-lasting effects on the hippocampus and induce cognitive deficits. However, data on network plasticity and the nature of cognitive deficits are conflicting. ⋯ Furthermore, rats with experimental febrile seizures showed modest but significant sprouting of mossy fiber collaterals into the inner molecular layer of the dentate gyrus in adulthood. We conclude that enhanced CA1 long-term potentiation and mild mossy fiber sprouting occur after experimental febrile seizures, without affecting spatial learning and memory in the Morris water maze. These long-term functional and structural alterations in hippocampal plasticity are likely to play a role in the enhanced seizure susceptibility in this model of prolonged human febrile seizures but do not correlate with overt cognitive deficits.