• Critical care medicine · Jul 2024

    Effect of Increasing Blood Pressure on Brain Tissue Oxygenation in Adults After Severe Traumatic Brain Injury.

    • Thitikan Kunapaisal, Abhijit V Lele, Courtney Gomez, Anne Moore, Marie Angele Theard, and Monica S Vavilala.
    • Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA.
    • Crit. Care Med. 2024 Jul 1; 52 (7): e332e340e332-e340.

    ObjectivesTo examine if increasing blood pressure improves brain tissue oxygenation (PbtO 2 ) in adults with severe traumatic brain injury (TBI).DesignRetrospective review of prospectively collected data.SettingLevel-I trauma center teaching hospital.PatientsIncluded patients greater than or equal to 18 years of age and with severe (admission Glasgow Coma Scale [GCS] score < 9) TBI who had advanced neuromonitoring (intracranial blood pressure [ICP], PbtO 2 , and cerebral autoregulation testing).InterventionsThe exposure was mean arterial pressure (MAP) augmentation with a vasopressor, and the primary outcome was a PbtO 2 response. Cerebral hypoxia was defined as PbtO 2 less than 20 mm Hg (low).Main ResultsMAP challenge test results conducted between ICU admission days 1-3 from 93 patients (median age 31; interquartile range [IQR], 24-44 yr), 69.9% male, White ( n = 69, 74.2%), median head abbreviated injury score 5 (IQR 4-5), and median admission GCS 3 (IQR 3-5) were examined. Across all 93 tests, a MAP increase of 25.7% resulted in a 34.2% cerebral perfusion pressure (CPP) increase and 16.3% PbtO 2 increase (no MAP or CPP correlation with PbtO 2 [both R2 = 0.00]). MAP augmentation increased ICP when cerebral autoregulation was impaired (8.9% vs. 3.8%, p = 0.06). MAP augmentation resulted in four PbtO 2 responses (normal and maintained [group 1: 58.5%], normal and deteriorated [group 2: 2.2%; average 45.2% PbtO 2 decrease], low and improved [group 3: 12.8%; average 44% PbtO 2 increase], and low and not improved [group 4: 25.8%]). The average end-tidal carbon dioxide (ETCO 2 ) increase of 5.9% was associated with group 2 when cerebral autoregulation was impaired ( p = 0.02).ConclusionsMAP augmentation after severe TBI resulted in four distinct PbtO 2 response patterns, including PbtO 2 improvement and cerebral hypoxia. Traditionally considered clinical factors were not significant, but cerebral autoregulation status and ICP responses may have moderated MAP and ETCO 2 effects on PbtO 2 response. Further study is needed to examine the role of MAP augmentation as a strategy to improve PbtO 2 in some patients.Copyright © 2024 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.