• Mayo Clinic proceedings · Feb 2024

    Machine Learning for Diagnosis of Pulmonary Hypertension by Echocardiography.

    • Vidhu Anand, Alexander D Weston, Christopher G Scott, Garvan C Kane, Patricia A Pellikka, and Rickey E Carter.
    • Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
    • Mayo Clin. Proc. 2024 Feb 1; 99 (2): 260270260-270.

    ObjectiveTo evaluate a machine learning (ML)-based model for pulmonary hypertension (PH) prediction using measurements and impressions made during echocardiography.MethodsA total of 7853 consecutive patients with right-sided heart catheterization and transthoracic echocardiography performed within 1 week from January 1, 2012, through December 31, 2019, were included. The data were split into training (n=5024 [64%]), validation (n=1275 [16%]), and testing (n=1554 [20%]). A gradient boosting machine with enumerated grid search for optimization was selected to allow missing data in the boosted trees without imputation. The training target was PH, defined by right-sided heart catheterization as mean pulmonary artery pressure above 20 mm Hg; model performance was maximized relative to area under the receiver operating characteristic curve using 5-fold cross-validation.ResultsCohort age was 64±14 years; 3467 (44%) were female, and 81% (6323/7853) had PH. The final trained model included 19 characteristics, measurements, or impressions derived from the echocardiogram. In the testing data, the model had high discrimination for the detection of PH (area under the receiver operating characteristic curve, 0.83; 95% CI, 0.80 to 0.85). The model's accuracy, sensitivity, positive predictive value, and negative predictive value were 82% (1267/1554), 88% (1098/1242), 89% (1098/1241), and 54% (169/313), respectively.ConclusionBy use of ML, PH could be predicted on the basis of clinical and echocardiographic variables, without tricuspid regurgitation velocity. Machine learning methods appear promising for identifying patients with low likelihood of PH.Copyright © 2023 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…