-
- Shuai-Kang Wang, Peng Wang, Zhong-En Li, Xiang-Yu Li, Chao Kong, Si-Tao Zhang, and Shi-Bao Lu.
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China.
- Eur Spine J. 2024 Mar 1; 33 (3): 104410541044-1054.
PurposeThis study aimed to develop a predictive model for prolonged length of hospital stay (pLOS) in elderly patients undergoing lumbar fusion surgery, utilizing multivariate logistic regression, single classification and regression tree (hereafter, "classification tree") and random forest machine-learning algorithms.MethodsThis study was a retrospective review of a prospective Geriatric Lumbar Disease Database. The primary outcome measure was pLOS, which was defined as the LOS greater than the 75th percentile. All patients were grouped as pLOS group and non-pLOS. Three models (including logistic regression, single-classification tree and random forest algorithms) for predicting pLOS were developed using training dataset and internal validation using testing dataset. Finally, online tool based on our model was developed to assess its validity in the clinical setting (external validation).ResultsThe development set included 1025 patients (mean [SD] age, 72.8 [5.6] years; 632 [61.7%] female), and the external validation set included 175 patients (73.2 [5.9] years; 97[55.4%] female). Multivariate logistic analyses revealed that older age (odds ratio [OR] 1.06, p < 0.001), higher BMI (OR 1.08, p = 0.002), number of fused segments (OR 1.41, p < 0.001), longer operative time (OR 1.02, p < 0.001), and diabetes (OR 1.05, p = 0.046) were independent risk factors for pLOS in elderly patients undergoing lumbar fusion surgery. The single-classification tree revealed that operative time ≥ 232 min, delayed ambulation, and BMI ≥ 30 kg/m2 as particularly influential predictors for pLOS. A random forest model was developed using the remaining 14 variables. Intraoperative EBL, operative time, delayed ambulation, age, number of fused segments, BMI, and RBC count were the most significant variables in the final model. The predictive ability of our three models was comparable, with no significant differences in AUC (0.73 vs. 0.71 vs. 0.70, respectively). The logistic regression model had a higher net benefit for clinical intervention than the other models. The nomogram was developed, and the C-index of external validation for PLOS was 0.69 (95% CI, 0.65-0.76).ConclusionThis investigation produced three predictive models for pLOS in elderly patients undergoing lumbar fusion surgery. The predictive ability of our three models was comparable. Logistic regression model had a higher net benefit for clinical intervention than the other models. Our predictive model could inform physicians about elderly patients with a high risk of pLOS after surgery.© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.