• Transl Res · Feb 2014

    Review

    Zebrafish models of dyslipidemia: relevance to atherosclerosis and angiogenesis.

    • Longhou Fang, Chao Liu, and Yury I Miller.
    • Department of Medicine, University of California, San Diego, La Jolla, Calif.
    • Transl Res. 2014 Feb 1; 163 (2): 9910899-108.

    AbstractLipid and lipoprotein metabolism in zebrafish and in humans are remarkably similar. Zebrafish express all major nuclear receptors, lipid transporters, apolipoproteins and enzymes involved in lipoprotein metabolism. Unlike mice, zebrafish express cetp and the Cetp activity is detected in zebrafish plasma. Feeding zebrafish a high cholesterol diet, without any genetic intervention, results in significant hypercholesterolemia and robust lipoprotein oxidation, making zebrafish an attractive animal model to study mechanisms relevant to early development of human atherosclerosis. These studies are facilitated by the optical transparency of zebrafish larvae and the availability of transgenic zebrafish expressing fluorescent proteins in endothelial cells and macrophages. Thus, vascular processes can be monitored in live animals. In this review article, we discuss recent advances in using dyslipidemic zebrafish in atherosclerosis-related studies. We also summarize recent work connecting lipid metabolism with regulation of angiogenesis, the work that considerably benefited from using the zebrafish model. These studies uncovered the role of aibp, abca1, abcg1, mtp, apoB, and apoC2 in regulation of angiogenesis in zebrafish and paved the way for future studies in mammals, which may suggest new therapeutic approaches to modulation of excessive or diminished angiogenesis contributing to the pathogenesis of human disease.Copyright © 2014 Mosby, Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.