• Arch Med Sci · Jan 2024

    A new in-hospital mortality prediction nomogram for intensive care unit patients with acute pancreatitis.

    • HuangShengSDepartment of Critical Care Medicine, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China., Jiawei Ma, Huishui Dai, and Liang Luo.
    • Department of Critical Care Medicine, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China.
    • Arch Med Sci. 2024 Jan 1; 20 (1): 617061-70.

    IntroductionAcute pancreatitis (AP) is a prevalent inflammatory disease that can lead to severe abdominal pain and multiple organ failure, potentially resulting in pancreatic necrosis and persistent dysfunction. A nomogram prediction model was developed to accurately evaluate the prognosis and provide therapy guidance to AP patients.Material And MethodsRetrospective data extraction was performed using MIMIC-IV, an open-source clinical database, to obtain 1344 AP patient records, of which the primary dataset included 1030 patients after the removal of repeated hospitalizations. The prediction of in-hospital mortality (IHM) used the least absolute shrinkage and selection operator (LASSO) regression model to optimize feature selection. A multivariate logistic regression analysis was used to build a prediction model incorporating the selected features, and the C-index, calibration plot, and decision curve analysis (DCA) were utilized to evaluate the discrimination, calibration, and clinical applicability of the prediction model.ResultsThe nomogram utilized a combination of indicators, including the SAPS II score, RDW, MBP, RR, PTT, and fluid-electrolyte disorders. Impressively, the model exhibited a satisfactory diagnostic performance, with area under the curve values of 0.892 and 0.856 for the training cohort and internal validation, respectively. Moreover, the calibration plots and the Hosmer-Lemeshow goodness-of-fit (HL) test revealed a strong correlation between the predicted and actual outcomes (p = 0.73), further confirming the reliability of our model. Notably, the results of the decision curve analysis (DCA) highlighted the superiority of our model over previously described scoring methods in terms of net clinical benefit, solidifying its value in clinical applications.ConclusionsOur novel nomogram is a simple tool for accurately predicting IHM in ICU patients with AP. Treatment methods that enhance the factors involved in the model may contribute to increased in-hospital survival for these ICU patients.Copyright: © 2023 Termedia & Banach.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…