-
- Tao Han, Xianwang Liu, and Junlin Zhou.
- Department of Radiology, Lanzhou University Second Hospita, Lanzhou, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
- World Neurosurg. 2024 Jun 1; 186: 9810798-107.
AbstractMeningiomas are the most common primary central nervous system tumors. The preferred treatment is maximum safe resection, and the heterogeneity of meningiomas results in a variable prognosis. Progression/recurrence (P/R) can occur at any grade of meningioma and is a common adverse outcome after surgical treatment and a major cause of postoperative rehospitalization, secondary surgery, and mortality. Early prediction of P/R plays an important role in postoperative management, further adjuvant therapy, and follow-up of patients. Therefore, it is essential to thoroughly analyze the heterogeneity of meningiomas and predict postoperative P/R with the aid of noninvasive preoperative imaging. In recent years, the development of advanced magnetic resonance imaging technology and machine learning has provided new insights into noninvasive preoperative prediction of meningioma P/R, which helps to achieve accurate prediction of meningioma P/R. This narrative review summarizes the current research on conventional magnetic resonance imaging, functional magnetic resonance imaging, and machine learning in predicting meningioma P/R. We further explore the significance of tumor microenvironment in meningioma P/R, linking imaging features with tumor microenvironment to comprehensively reveal tumor heterogeneity and provide new ideas for future research.Copyright © 2024 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.