• World Neurosurg · Jun 2024

    Review

    Exploring the Landscape of Hydrogel Therapy for Spinal Cord Injury: A Bibliometric and Visual Analysis (1991-2023).

    • Hongpeng Ma, Song Liu, Hao Zhong, Mi Zhou, Cong Xing, Yan Li, Qi Zhang, Junrui Guo, and Guangzhi Ning.
    • Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China.
    • World Neurosurg. 2024 Jun 1; 186: e95e105e95-e105.

    BackgroundThis study aimed to conduct a bibliometric analysis of the literature on hydrogel therapy for spinal cord injury to visualize the research status, identify hotspots, and explore the development trends in this field.MethodsWeb of science Core Collection database was searched for relevant studies published between January 1991 and December 2023. Data such as journal title, author information, institutional affiliation, country, citation, and keywords were extracted. Bibliometrix, CiteSpace, and VOSviewer were used to perform bibliometric analysis of the retrieved data.ResultsA total of 1099 articles pertaining to hydrogel therapy for spinal cord injury were retrieved, revealing an upward trajectory in both annual publication volume and cumulative publication volume. Biomaterials emerged as the journal with the highest number of publications and the most rapid cumulative publication growth, contributing 84 articles. Among authors, Shoichet MS stood out with the highest number of publications and citations, totaling 66 articles. The University of Toronto led in institutional contributions with 65 publications, while China dominated in country-specific publications, accounting for 374 articles. However, to foster significant academic achievements, it is imperative for diverse authors, institutions, and countries to enhance collaboration. Current research in this field concentrates on scaffold architecture, nerve growth factor, the fibrotic microenvironment, and guidance channels. Simultaneously, upcoming research directions prioritize 3D bioprinting, injectable hydrogel, inflammation, and nanoparticles within the realm of hydrogel therapy for spinal cord injuries.ConclusionsIn summary, this study provided a comprehensive analysis of the current research status and frontiers of hydrogel therapy for spinal cord injury. The findings provide a foundation for future research and clinical translation efforts of hydrogel therapy in this field.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…