-
- Weiguo Cao, Benjamin M Howe, Darryl E Wright, Sumana Ramanathan, Nicholas G Rhodes, Panagiotis Korfiatis, Kimberly K Amrami, Robert J Spinner, and Timothy L Kline.
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN 55905, USA.
- Neuroscience. 2024 May 14; 546: 178187178-187.
AbstractAutomatic abnormality identification of brachial plexus (BP) from normal magnetic resonance imaging to localize and identify a neurologic injury in clinical practice (MRI) is still a novel topic in brachial plexopathy. This study developed and evaluated an approach to differentiate abnormal BP with artificial intelligence (AI) over three commonly used MRI sequences, i.e. T1, FLUID sensitive and post-gadolinium sequences. A BP dataset was collected by radiological experts and a semi-supervised artificial intelligence method was used to segment the BP (based on nnU-net). Hereafter, a radiomics method was utilized to extract 107 shape and texture features from these ROIs. From various machine learning methods, we selected six widely recognized classifiers for training our Brachial plexus (BP) models and assessing their efficacy. To optimize these models, we introduced a dynamic feature selection approach aimed at discarding redundant and less informative features. Our experimental findings demonstrated that, in the context of identifying abnormal BP cases, shape features displayed heightened sensitivity compared to texture features. Notably, both the Logistic classifier and Bagging classifier outperformed other methods in our study. These evaluations illuminated the exceptional performance of our model trained on FLUID-sensitive sequences, which notably exceeded the results of both T1 and post-gadolinium sequences. Crucially, our analysis highlighted that both its classification accuracies and AUC score (area under the curve of receiver operating characteristics) over FLUID-sensitive sequence exceeded 90%. This outcome served as a robust experimental validation, affirming the substantial potential and strong feasibility of integrating AI into clinical practice.Copyright © 2024 IBRO. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.