• Neuroscience · Aug 2010

    Substrates of auditory frequency integration in a nucleus of the lateral lemniscus.

    • A Yavuzoglu, B R Schofield, and J J Wenstrup.
    • Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, USA.
    • Neuroscience. 2010 Aug 25; 169 (2): 906919906-19.

    AbstractIn the intermediate nucleus of the lateral lemniscus (INLL), some neurons display a form of spectral integration in which excitatory responses to sounds at their best frequency are inhibited by sounds within a frequency band at least one octave lower. Previous work showed that this response property depends on low-frequency-tuned glycinergic input. To identify all sources of inputs to these INLL neurons, and in particular the low-frequency glycinergic input, we combined retrograde tracing with immunohistochemistry for the neurotransmitter glycine. We deposited a retrograde tracer at recording sites displaying either high best frequencies (>75 kHz) in conjunction with combination-sensitive inhibition, or at sites displaying low best frequencies (23-30 kHz). Most retrogradely labeled cells were located in the ipsilateral medial nucleus of the trapezoid body (MNTB) and contralateral anteroventral cochlear nucleus. Consistent labeling, but in fewer numbers, was observed in the ipsilateral lateral nucleus of the trapezoid body (LNTB), contralateral posteroventral cochlear nucleus, and a few other brainstem nuclei. When tracer deposits were combined with glycine immunohistochemistry, most double-labeled cells were observed in the ipsilateral MNTB (84%), with fewer in LNTB (13%). After tracer deposits at combination-sensitive recording sites, a striking result was that MNTB labeling occurred in both medial and lateral regions. This labeling appeared to overlap the MNTB labeling that resulted from tracer deposits in low-frequency recording sites of INLL. These findings suggest that MNTB is the most likely source of low-frequency glycinergic input to INLL neurons with high best frequencies and combination-sensitive inhibition. This work establishes an anatomical basis for frequency integration in the auditory brainstem.Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.