-
Comparative Study
Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.
- S V Karnup, A Hayar, M T Shipley, and M G Kurnikova.
- University of Maryland Medical School, Department of Physiology, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA. skarn001@umaryland.edu
- Neuroscience. 2006 Sep 29; 142 (1): 203221203-21.
AbstractField potentials recorded in the olfactory bulb glomerular layer (GL) are thought to result mainly from activation of mitral and tufted cells. The contribution of juxtaglomerular cells (JG) is unknown. We tested the hypothesis that JG are the main driving force to novel spontaneous glomerular layer field potentials (sGLFPs), which were recorded in rat olfactory bulb slices maintained in an interface chamber. We found that sGLFPs have comparable magnitudes, durations and frequencies both in standard horizontal slices, where all layers with all cell types were present, and in isolated GL slices, where only JG cells were preserved. Hence, the impact of mitral and deep/medium tufted cells to sGLFPs turned out to be minor. Therefore, we propose that the main generators of sGLFPs are JG neurons. We further explored the mechanism of generation of sGLFPs using a neuronal ensemble model comprising all types of cells associated with a single glomerulus. Random orientation and homogenous distribution of dendrites in the glomerular neuropil along with surrounding shell of cell bodies of JG neurons resulted in substantial spatial restriction of the generated field potential. The model predicts that less than 20% of sGLFP can spread from one glomerulus to an adjacent one. The contribution of JG cells to the total field in the center of the glomerulus is estimated as approximately 50% ( approximately 34% periglomerular and approximately 16% external tufted cells), whereas deep/medium tufted cells provide approximately 39% and mitral cells only approximately 10%. Occasionally, some sGLFPs recorded in adjacent or remote glomeruli were cross-correlated, suggesting involvement of interglomerular communication in information coding. These results demonstrate a leading role of JG cells in activation of the main olfactory bulb (MOB) functional modules. Finally, we hypothesize that the GL is not a set of independent modules, but it represents a subsystem in the MOB network, which can perform initial processing of odors.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.