• Nutrition · Jul 2024

    Branched-chain amino acid supplementation drives dynamic changes in gut microbiota without impairing glucose and lipid homeostasis at the different stages of insulin resistance in mice on a high-fat diet.

    • Rui Liu, Yang Yang, Guanjin Shi, and Lei Zhang.
    • Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, China. Electronic address: LiuR@jhun.edu.cn.
    • Nutrition. 2024 Jul 1; 123: 112410112410.

    ObjectiveThe potential role of dietary branched-chain amino acids on circulating branched-chain amino acid levels and their relationship with metabolic health are complex, and the literature is inconsistent. We aimed to explore the dynamic effects of branched-chain amino acid supplementation on glucose and lipid homeostasis at different stages of insulin resistance in high-fat diet-fed mice.MethodsMale C57BL/6J mice were fed with a normal chow diet, high-fat diet, or high-fat diet supplemented with 100% branched-chain amino acids for 12 or 24 wk. Metabolic parameters and gut microbiota profiling were performed at these two time points.ResultsHigh-fat diet feeding caused varying degrees of branched-chain amino acid metabolic disorders in two different stages of insulin resistance. Supplementing with branched-chain amino acids further exacerbated branched-chain amino acid accumulation in the early stage of insulin resistance (12 wk), while adding branched-chain amino acids did not further elevate branched-chain amino acid levels in the hyperglycemia and hyperinsulinemia stage (24 wk). Compared with the high-fat diet group, branched-chain amino acid supplementation did not affect body weight; liver total cholesterol and triacylglycerol levels; and serum glucose, insulin, total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels as well as glucose tolerance at these two time points but triggered dynamic changes in the gut bacterial diversity and gut microbiota composition and abundance, especially in the genus associated with obesity and related metabolic disorders.ConclusionDietary branched-chain amino acid supplementation drives dynamic changes in circulating branched-chain amino acid levels and gut microbiome without subsequent effects on glucose and lipid homeostasis in high-fat diet-induced obese mice within the parameters of our study.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.