• World Neurosurg · Jun 2024

    Meta Analysis

    The Performance of Machine Learning for Prediction of H3K27 M Mutation in Midline Gliomas: A Systematic Review and Meta-Analysis.

    • Mohammad Amin Habibi, Fateme Aghaei, Zohreh Tajabadi, Mohammad Sina Mirjani, Poriya Minaee, and SeyedMohammad Eazi.
    • Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran. Electronic address: mohammad.habibi1392@yahoo.com.
    • World Neurosurg. 2024 Jun 1; 186: e7e19e7-e19.

    BackgroundDiffuse midline gliomas (DMGs) encompass a set of tumors, and those tumors with H3K27 M mutation carry a poor prognosis. In recent years, machine learning (ML)-based radiomics have shown promising results in predicting gene mutation status non-invasively. Therefore, this study aims to comprehensively evaluate the diagnostic performance of ML-based magnetic resonance imaging radiomics in predicting H3K27 M mutation status in DMG patients.MethodsA systematic search was conducted using relevant keywords in PubMed/Medline, Scopus, Embase, and Web of Science from inception to May 2023. Original studies evaluating the diagnostic performance of ML models in predicting H3K27 M mutation status in DMGs were enrolled. Quality assessment of the enrolled studies was conducted using QUADAS-2. Data were analyzed using STATA version 17.0 to calculate pooled sensitivity, specificity, positive and negative likelihood ratio, diagnostic score, and diagnostic odds ratio.ResultsA total of 13 studies, including 12 retrospectives and 1 both retrospective and prospective study, enrolled 1510 (male = 777) DMG patients. Six studies underwent meta-analysis which showed a pooled sensitivity, specificity, positive and negative likelihood ratio, diagnostic score, and diagnostic odds ratio of 0.91 (95% CI 0.77-0.97), 0.81 (95% CI 0.73-0.88), 4.86 (95% CI 3.25-7.24), 0.11 (95% CI 0.04-0.29), 3.75 (95% CI 2.62-4.88), and 42.61 (95% CI 13.77-131.87), respectively.ConclusionsNon-invasive prediction of H3K27 M mutation status in patients with DMGs using magnetic resonance imaging radiomics is a promising tool with good diagnostic performance. However, the pooled metrics had a wide confidence interval, which required further studies to enhance ML algorithms' accuracy and facilitate their integration into daily clinical practice.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…