• World Neurosurg · Jul 2024

    Artificial intelligence assistance for the measurement of full alignment parameters in whole-spine lateral radiographs.

    • Federico Landriel, Bruno Cruz Franchi, Candelaria Mosquera, LichtenbergerFernando PadillaFPNeurosurgical Department, Spine Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina., Sonia Benitez, Martina Aineseder, Alfredo Guiroy, and Santiago Hem.
    • Neurosurgical Department, Spine Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina. Electronic address: federico.landriel@hospitalitaliano.org.ar.
    • World Neurosurg. 2024 Jul 1; 187: e363e382e363-e382.

    BackgroundMeasuring spinal alignment with radiological parameters is essential in patients with spinal conditions likely to be treated surgically. These evaluations are not usually included in the radiological report. As a result, spinal surgeons commonly perform the measurement, which is time-consuming and subject to errors. We aim to develop a fully automated artificial intelligence (AI) tool to assist in measuring alignment parameters in whole-spine lateral radiograph (WSL X-rays).MethodsWe developed a tool called Vertebrai that automatically calculates the global spinal parameters (GSPs): Pelvic incidence, sacral slope, pelvic tilt, L1-L4 angle, L4-S1 lumbo-pelvic angle, T1 pelvic angle, sagittal vertical axis, cervical lordosis, C1-C2 lordosis, lumbar lordosis, mid-thoracic kyphosis, proximal thoracic kyphosis, global thoracic kyphosis, T1 slope, C2-C7 plummet, spino-sacral angle, C7 tilt, global tilt, spinopelvic tilt, and hip odontoid axis. We assessed human-AI interaction instead of AI performance alone. We compared the time to measure GSP and inter-rater agreement with and without AI assistance. Two institutional datasets were created with 2267 multilabel images for classification and 784 WSL X-rays with reference standard landmark labeled by spinal surgeons.ResultsVertebrai significantly reduced the measurement time comparing spine surgeons with AI assistance and the AI algorithm alone, without human intervention (3 minutes vs. 0.26 minutes; P < 0.05). Vertebrai achieved an average accuracy of 83% in detecting abnormal alignment values, with the sacral slope parameter exhibiting the lowest accuracy at 61.5% and spinopelvic tilt demonstrating the highest accuracy at 100%. Intraclass correlation analysis revealed a high level of correlation and consistency in the global alignment parameters.ConclusionsVertebrai's measurements can accurately detect alignment parameters, making it a promising tool for measuring GSP automatically.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.