• World Neurosurg · Jul 2024

    External Validation of Predictive Models for Failed Medical Management of Spinal Epidural Abscess.

    • Tej D Azad, Anita L Kalluri, Kelly Jiang, Adrian E Jimenez, Jiaqi Liu, Praneethkumar Madhu, Melanie A Horowitz, Kathleen Ran, Wataru Ishida, Ravi Medikonda, Yuanxuan Xia, Ann Liu, Yike Jin, Daniel Lubelski, Ali Bydon, Nicholas Theodore, and Timothy F Witham.
    • Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA. Electronic address: tazad1@jhmi.edu.
    • World Neurosurg. 2024 Jul 1; 187: e638e648e638-e648.

    ObjectiveThere is limited consensus regarding management of spinal epidural abscesses (SEAs), particularly in patients without neurologic deficits. Several models have been created to predict failure of medical management in patients with SEA. We evaluate the external validity of 5 predictive models in an independent cohort of patients with SEA.MethodsOne hundred seventy-six patients with SEA between 2010 and 2019 at our institution were identified, and variables relevant to each predictive model were collected. Published prediction models were used to assign probability of medical management failure to each patient. Predicted probabilities of medical failure and actual patient outcomes were used to create receiver operating characteristic (ROC) curves, with the area under the receiver operating characteristic curve used to quantify a model's discriminative ability. Calibration curves were plotted using predicted probabilities and actual outcomes. The Spiegelhalter z-test was used to determine adequate model calibration.ResultsOne model (Kim et al) demonstrated good discriminative ability and adequate model calibration in our cohort (ROC = 0.831, P value = 0.83). Parameters included in the model were age >65, diabetes, methicillin-resistant Staphylococcus aureus infection, and neurologic impairment. Four additional models did not perform well for discrimination or calibration metrics (Patel et al, ROC = 0.580, P ≤ 0.0001; Shah et al, ROC = 0.653, P ≤ 0.0001; Baum et al, ROC = 0.498, P ≤ 0.0001; Page et al, ROC = 0.534, P ≤ 0.0001).ConclusionsOnly 1 published predictive model demonstrated acceptable discrimination and calibration in our cohort, suggesting limited generalizability of the evaluated models. Multi-institutional data may facilitate the development of widely applicable models to predict medical management failure in patients with SEA.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.