• J Pain · Sep 2024

    Randomized Controlled Trial

    Hyperglycaemia and central obesity disrupt conditioned pain modulation: A single-blind cross-over randomised controlled trial.

    • Di Ye, Timothy J Fairchild, Lechi Vo, and Peter D Drummond.
    • School of Psychology and Centre for Healthy Ageing, College of Health and Education, Murdoch University, Murdoch, Western Australia, Australia.
    • J Pain. 2024 Sep 1; 25 (9): 104553104553.

    AbstractHyperglycemia and high adiposity are risk factors for pain in diabetes. To clarify these links with pain, the effects of a glucose load on sensory detection, pain sensitivity, conditioned pain modulation (primary aims), and autonomic and endothelial functions (secondary aims) were examined in 64 pain-free participants: 22 with normal adiposity (determined by dual-energy X-ray absorptiometry), 29 with high adiposity, and 13 with combined high adiposity and elevated glycated hemoglobin (HbA1c; including prediabetes and type 2 diabetes). Participants ingested either 37.5 g glucose or 200 mg sucralose (taste-matched) in the first session and crossed over to the other substance in the second session 1 month later. At baseline, painful temple cooling (the conditioning stimulus) inhibited pressure- and heat-pain in the ipsilateral arm (the test stimuli) immediately after cooling ceased (partial η2's > .32). Glucose ingestion weakened pressure-pain inhibition irrespective of HbA1c levels (partial η2 = .11). However, a larger reduction in pressure-pain inhibition after ingesting glucose was associated with a higher waist/hip ratio (r = .31), suggesting a role of central obesity. Heat-pain inhibition was absent at baseline in unmedicated participants with elevated HbA1c, and these participants reported more occlusion-induced pain after ingesting glucose (partial η2's > .17). Glucose ingestion interfered with parasympathetic activity in all participants (partial η2 = .11) but did not affect endothelial function (measured by reactive hyperemia) or alter other sensations (eg, feet vibration detection). The disruptive effect of hyperglycemia on conditioned pain modulation increases in line with central obesity, which might facilitate pain in diabetes. PERSPECTIVE: Ingesting 37.5 g glucose (approximately 350 mL soft drink) interfered with pain modulation in pain-free adults with normal adiposity or with combined high adiposity and HbA1c levels. The interference was stronger alongside increasing central obesity, suggesting that controlling blood glucose and body fat mass might help preserve pain modulation.Copyright © 2024 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.