• Neuroscience · Jul 2024

    Glycoprotein Non-metastatic Melanoma Protein B (GPNMB) Protects Against Neuroinflammation and Neuronal Loss in Pilocarpine-induced Epilepsy via the Regulation of Microglial Polarization.

    • Xuejing Hou, Shanshan Xiao, Xiaohong Xu, Mingze Qin, Xuebing Cheng, and Xiangping Xu.
    • Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
    • Neuroscience. 2024 Jul 23; 551: 166176166-176.

    AbstractEpilepsy is a progressive neurodegenerative disease highlighted by recurrent seizures, neuroinflammation, and the loss of neurons. Microglial dysfunction is commonly found in epileptic foci and contributes to neuroinflammation in the initiation and progression of epilepsy. Glycoprotein non-metastatic melanoma protein B (GPNMB), a transmembrane glycoprotein, has been involved in the microglial activation and neuroinflammation response. The present study investigated the functional significance of GPNMB in epilepsy. A proven model of epilepsy was established by intraperitoneal injection of pilocarpine to male Sprague Dawley rats. Lentivirus vectors carrying GPNMB or GPNMB short hairpin RNA (shGPNMB) were injected into the hippocampus to induce overexpression or knockdown of GPNMB. GPNMB expression was significantly upregulated and overexpression of GPNMB in the hippocampus reduced seizure activity and neuronal loss after status epilepticus (SE). We here focused on the effects of GPNMB deficiency on neuronal injury and microglia polarization 28 days after SE. GPNMB knockdown accelerated neuronal damage in the hippocampus, evidenced by increased neuron loss and neuronal cell apoptosis. Following GPNMB knockdown, M1 polarization (iNOS) and secretion of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α were increased, and M2 polarization (Arg1) and secretion of anti-inflammatory cytokines IL-4, IL-10, and TGF-β were decreased. BV2 cells were used to further confirm the regulatory role of GPNMB in modulating phenotypic transformations and inflammatory cytokine expressions in microglia. In conclusion, these results indicated that GPNMB suppressed epilepsy through repression of hippocampal neuroinflammation, suggesting that GPNMB might be considered the potential neurotherapeutic target for epilepsy management and play a protective role against epilepsy by modulating the polarization of microglia.Copyright © 2024 IBRO. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.